当前位置: 首页 > news >正文

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据)
1.MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据)
2.输入输出单个变量,时间序列预测预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.麻雀算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短…...

负载均衡——Ribbon

文章目录 Ribbon和Eureka配合使用项目引入RibbonRestTemplate添加LoadBalanced注解注意自定义均衡方式代码注册方式配置方式 Ribbon脱离Eureka使用 Ribbon&#xff0c;Nexflix发布的负载均衡器&#xff0c;有助于控制HTTP和TCP客户端的行为。基于某种负载均衡算法&#xff08;轮…...

7.微服务设计原则

1.微服务演进策略 从单体应用向微服务演进策略: 绞杀者策略&#xff0c;修缮者策略的另起炉灶策略&#xff1b; 绞杀者策赂 绞杀者策略是一种逐步剥离业务能力&#xff0c;用微服务逐步替代原有单体应用的策略。它对单体应用进行领域建模&#xff0c;根据领域边界&#xff0…...

【MATLAB库函数系列】线性调频Z(Chirp-Z,CZT)的MATLAB源码和C语言实现

在上一篇博客 【数字信号处理】线性调频Z(Chirp-Z,CZT)算法详解 已经详细介绍了CZT变换的应用背景和原理,先回顾一下: 回顾CZT算法 采用 FFT 算法可以很快计算出全部 N N N点 DFT 值,即Z变换 X ( z ) X(z) <...

BIT-6-指针(C语言初阶学习)

1. 指针是什么 2. 指针和指针类型 3. 野指针 4. 指针运算 5. 指针和数组 6. 二级指针 7. 指针数组 1. 指针是什么&#xff1f; 指针是什么&#xff1f; 指针理解的2个要点&#xff1a; 指针是内存中一个最小单元的编号&#xff0c;也就是地址平时口语中说的指针&#xff0c;通常…...

傻瓜式教学Docker 使用docker compose部署 php nginx mysql

首先你可以准备这个三个服务,也可以在docker compose 文件中 直接拉去指定镜像,这里演示的是镜像服务已经在本地安装好了,提供如下: PHP # 设置基础镜像 FROM php:8.2-fpm# install dependencies RUN apt-get update && apt-get install -y \vim \libzip-dev \libpng…...

node express简单微服务

首先&#xff0c;安装所需的依赖项&#xff0c;可以使用npm或yarn进行安装&#xff1a; $ npm install express axios接下来&#xff0c;创建一个名为service1.js的文件&#xff0c;用于实现第一个微服务&#xff1a; const express require(express); const axios require…...

nginx-proxy-manager初次登录502 bad gateway

nginx-proxy-manager初次登录502 bad gateway 按照官方docker-compose安装后,页面如下: 默认账户密码: adminexample.com/changeme点击sign in,提示Bad Gateway 打开调试 重装后依然如此,最后查阅githup issue 找到答案 https://github.com/NginxProxyManager/nginx-proxy-…...

Servlet见解2

4 创建servlet的三种方式 4.1 实现Servlet接口的方式 import javax.servlet.*; import javax.servlet.annotation.WebServlet; import java.io.IOException;WebServlet("/test1") public class Servlet1 implements Servlet {Overridepublic void init(ServletConf…...

【SpringCloud】-OpenFeign实战及源码解析、与Ribbon结合

一、背景介绍 二、正文 OpenFeign是什么&#xff1f; OpenFeign&#xff08;简称Feign&#xff09;是一个声明式的Web服务客户端&#xff0c;用于简化服务之间的HTTP通信。与Nacos和Ribbon等组件协同&#xff0c;以支持在微服务体系结构中方便地进行服务间的通信&#xff1b…...

走进数字金融峰会,为金融科技数字化赋能

12月20—21日&#xff0c;FSIDigital数字金融峰会在上海圆满召开。本次峰会包含InsurDigital数字保险峰会和B&SDigital数字银行与证券峰会2场平行峰会&#xff1b;吸引了近600位来自保险、银行、证券以及金融科技等行业的领导者和专家齐聚一堂&#xff0c;共同探讨金融业数…...

docker-compose部署kafka

docker-compose.yml配置 version: "3" services:kafka:image: bitnami/kafka:latestports:- 7050:7050environment:- KAFKA_ENABLE_KRAFTyes- KAFKA_CFG_PROCESS_ROLESbroker,controller- KAFKA_CFG_CONTROLLER_LISTENER_NAMESCONTROLLER- KAFKA_CFG_LISTENERSPLAIN…...

Spark与Hadoop的关系和区别

在大数据领域&#xff0c;Spark和Hadoop是两个备受欢迎的分布式数据处理框架&#xff0c;它们在处理大规模数据时都具有重要作用。本文将深入探讨Spark与Hadoop之间的关系和区别&#xff0c;以帮助大家的功能和用途。 Spark和Hadoop简介 1 Hadoop Hadoop是一个由Apache基金会…...

蓝桥杯-Excel地址[Java]

目录&#xff1a; 学习目标&#xff1a; 学习内容&#xff1a; 学习时间&#xff1a; 题目&#xff1a; 题目描述: 输入描述: 输出描述: 输入输出样例: 示例 1: 运行限制: 题解: 思路: 学习目标&#xff1a; 刷蓝桥杯题库日记 学习内容&#xff1a; 编号96题目Ex…...

OSPF多区域配置-新版(12)

目录 整体拓扑 操作步骤 1.基本配置 1.1 配置R1的IP 1.2 配置R2的IP 1.3 配置R3的IP 1.4 配置R4的IP 1.5 配置R5的IP 1.6 配置R6的IP 1.7 配置PC-1的IP地址 1.8 配置PC-2的IP地址 1.9 配置PC-3的IP地址 1.10 配置PC-4的IP地址 1.11 检测R5与PC1连通性 1.12 检测…...

华为---USG6000V防火墙web基本配置示例

目录 1. 实验要求 2. 配置思路 3. 网络拓扑图 4. USG6000V防火墙端口和各终端相关配置 5. 在USG6000V防火墙web管理界面创建区域和添加相应端口 6. 给USG6000V防火墙端口配置IP地址 7. 配置通行策略 8. 测试验证 8.1 逐个删除策略&#xff0c;再看各区域终端通信情况 …...

Ksher H5页面支付实例指导 (PHP实现)

背景 前两天&#xff0c;公司的项目&#xff0c;为了满足泰国客户的支付需求&#xff0c;要求使用 Ksher (开时支付) 对接任务突然就给了鄙人&#xff0c;一脸懵 … 通过了解客户的使用场景、以及参考官网指导 发现&#xff1a;Ksher支付最令人满意的便是 —— 提供了便捷的 支…...

https密钥认证、上传镜像实验

一、第一台主机通过https密钥对认证 1、安装docker服务 &#xff08;1&#xff09;安装环境依赖包 yum -y install yum-utils device-mapper-persistent-data lvm2 &#xff08;2&#xff09;设置阿里云镜像源 yum-config-manager --add-repo http://mirrors.aliyun.com/do…...

three.js使用精灵模型Sprite渲染森林

效果&#xff1a; 源码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div class"box-right&quo…...

什么是数据可视化?数据可视化的流程与步骤

前言 数据可视化将大大小小的数据集转化为更容易被人脑理解和处理的视觉效果。可视化在我们的日常生活中非常普遍&#xff0c;但它们通常以众所周知的图表和图形的形式出现。正确的数据可视化以有意义和直观的方式为复杂的数据集提供关键的见解。 数据可视化定义 数据可视化…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...