详解Keras3.0 Layer API: LSTM layer
LSTM layer
用于实现长短时记忆网络,它的主要作用是对序列数据进行建模和预测。

- 遗忘门(Forget Gate):根据当前输入和上一个时间步的隐藏状态,计算遗忘门的值。遗忘门的作用是控制哪些信息应该被遗忘,哪些信息应该保留。
- 输入门(Input Gate):根据当前输入和上一个时间步的隐藏状态,计算输入门的值。输入门的作用是控制新的信息应该被添加到隐藏状态中,还是应该替换掉旧的信息。
- 候选记忆单元(Candidate Memory Unit):将遗忘门和输入门的输出相加,得到候选记忆单元的值。候选记忆单元的作用是将新的记忆和旧的记忆结合起来,形成一个新的记忆单元。
- 输出门(Output Gate):根据当前输入和候选记忆单元,计算输出门的值。输出门的作用是决定下一个时间步的隐藏状态应该是什么。
keras.layers.LSTM(units,activation="tanh",recurrent_activation="sigmoid",use_bias=True,kernel_initializer="glorot_uniform",recurrent_initializer="orthogonal",bias_initializer="zeros",unit_forget_bias=True,kernel_regularizer=None,recurrent_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,recurrent_constraint=None,bias_constraint=None,dropout=0.0,recurrent_dropout=0.0,seed=None,return_sequences=False,return_state=False,go_backwards=False,stateful=False,unroll=False,**kwargs
)
参数说明
units: 整数,表示LSTM层的神经元数量。activation: 字符串或激活函数对象,表示LSTM层的激活函数。默认为"tanh"。recurrent_activation: 字符串或激活函数对象,表示LSTM层的循环激活函数。默认为"sigmoid"。use_bias: 布尔值,表示是否在LSTM层中使用偏置项。默认为True。kernel_initializer: 初始化器对象,用于初始化LSTM层的权重矩阵。默认为"glorot_uniform"。recurrent_initializer: 初始化器对象,用于初始化LSTM层的递归权重矩阵。默认为"orthogonal"。bias_initializer: 初始化器对象,用于初始化LSTM层的偏置项。默认为"zeros"。unit_forget_bias: 布尔值,表示是否在LSTM层中添加遗忘门的偏置项。默认为True。kernel_regularizer: 正则化器对象,用于对LSTM层的权重矩阵施加正则化。默认为None。recurrent_regularizer: 正则化器对象,用于对LSTM层的递归权重矩阵施加正则化。默认为None。bias_regularizer: 正则化器对象,用于对LSTM层的偏置项施加正则化。默认为None。activity_regularizer: 正则化器对象,用于对LSTM层的输出施加正则化。默认为None。kernel_constraint: 约束器对象,用于对LSTM层的权重矩阵施加约束。默认为None。recurrent_constraint: 约束器对象,用于对LSTM层的递归权重矩阵施加约束。默认为None。bias_constraint: 约束器对象,用于对LSTM层的偏置项施加约束。默认为None。dropout: 浮点数,表示LSTM层的丢弃率。默认为0.0。recurrent_dropout: 浮点数,表示LSTM层的循环丢弃率。默认为0.0。seed: 整数,表示随机数生成器的种子。默认为None。return_sequences: 布尔值,表示是否返回整个序列的输出。默认为False。return_state: 布尔值,表示是否返回最后一个时间步的状态。默认为False。go_backwards: 布尔值,表示是否反向处理输入序列。默认为False。stateful: 布尔值,表示是否保持状态以供后续时间步使用。默认为False。unroll: 布尔值,表示是否展开LSTM层以减少计算复杂性。默认为False。**kwargs: 其他关键字参数,将传递给底层的TensorFlow操作。
示例
from keras.models import Sequential
from keras.layers import LSTM, Dense#创建一个Sequential模型对象
model = Sequential()#添加一个LSTM层,设置单元数为32,输入形状为(timesteps, input_dim)
model.add(LSTM(units=32, input_shape=(timesteps, input_dim)))#添加一个全连接层(Dense),设置单元数为output_dim,激活函数为softmax
model.add(Dense(units=output_dim, activation='softmax'))# 编译模型,设置损失函数为分类交叉熵(categorical_crossentropy),优化器为Adam,评估指标为准确率(accuracy)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])#使用训练数据(x_train, y_train)进行模型训练,设置迭代次数为10,批量大小为32
model.fit(x_train, y_train, epochs=10, batch_size=32)
相关文章:
详解Keras3.0 Layer API: LSTM layer
LSTM layer 用于实现长短时记忆网络,它的主要作用是对序列数据进行建模和预测。 遗忘门(Forget Gate):根据当前输入和上一个时间步的隐藏状态,计算遗忘门的值。遗忘门的作用是控制哪些信息应该被遗忘,哪些…...
Vue和React的运行时,校验引入包的上下文差异
背景 系统使用 webpack 5 模块联邦实现微前端,有关如何实现跨应用的代码共享,可参考 如何优雅的实现跨应用的代码共享 里的第三大点。 总之,这里是其他应用使用了某个应用共享出来的reg文件,引入方式为: import REG …...
C语言中函数调用和嵌套
函数是C语言的基本组成元素 函数调用 根据函数在程序中出现的位置有下列三种函数调用方式: 将函数作为表达式调用 将函数作为表达式调用时,函数的返回值参与表达式的运算,此时要求函数必须有返回值 int retmax(100,150); 将函数作为语句…...
JVM基础篇---02
为什么需要用户自定义类加载器: 扩展类加载器的功能: Java的默认类加载器主要有三个,分别是引导类加载器、扩展类加载器和应用程序类加载器。其中,引导类加载器和扩展类加载器是由JVM实现的,用户无法修改其行为。而应用…...
HTML网站基础
一、前端开发基础 前端一共三门语言——HTML、CSS、JS(Java Script) HTML用于静态网页框架,CSS用于修饰,JS构成动态网页 1、HTML 对于中文网页需要使用 <meta charset"utf-8"> 声明编码,否则会出现…...
最优化考试之惩罚函数外点法
最优化考试之惩罚函数外点法 一、外点法1.问题条件2.解题过程 一、外点法 1.问题条件 目标函数 f ( x ) f(x) f(x)约束函数 g ( x ) g(x) g(x) 2.解题过程 定义罚函数 F ( x ) f ( x ) t ∗ m i n ( 0 , g ( x ) 2 ) F(x)f(x)t*min(0,g(x)^2) F(x)f(x)t∗min(0,g(x)2)对罚…...
JavaScript 数组【详解】
Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍JavaScript中数组详解 数组声明/基础操作以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可…...
Node.js版本对比
目录 1. node版本与Npm版本对照表 2. node版本与node-sass版本对照表 3. node-sass与sass-loader版本对照表 1. node版本与Npm版本对照表 以往的版本 | Node.js 下面显示最新的对应内容,如果需要查找历史版本,可以进入上面的页面查询 VersionLTSDateV8np…...
人工智能:网络犯罪分子的驱动力
随着 2024 年的临近,是时候展望今年的网络安全状况了。由于网络犯罪日益复杂,预计到 2025 年,全球网络安全成本将增至 10.5 万亿美元。 人工智能的使用不断发展,网络犯罪分子变得越来越有创造力 我们注意到,联邦调查…...
ASP.NET Core认证原理和实现
ASP.NET Core认证原理和实现 AuthenticationHttpContextExtensions AuthenticationHttpContextExtensions 类是对 HttpContext 认证相关的扩展,它提供了如下扩展方法: public static class AuthenticationHttpContextExtensions {public static Task&l…...
基于OpenCV的图像颜色与形状识别的原理2
基于OpenCV的图像颜色与形状识别通常涉及以下几个步骤: 图像读取:使用OpenCV的cv2.imread()函数读取图像。预处理:可能包括图像的灰度转换、二值化、滤波等,以减少噪声和无关信息。颜色识别:颜色空间转换:…...
无法获取前置摄像头的预览图像?【Bug已解决-鸿蒙开发】
文章目录 项目场景:问题描述原因分析:解决方案:此Bug解决方案总结HarmonyOS和OpenHarmony区别和联系项目场景: 最近也是遇到了这个问题,看到网上也有人在询问这个问题,本文总结了自己和其他人的解决经验,解决了无法获取前置摄像头的预览图像的问题。 问题:前置摄像头…...
微信小程序的bindtap和catchtap的区别
一. 事件 1.事件是视图层到逻辑层的通讯方式。 2. 事件可以将用户的行为反馈到逻辑层进行处理。 3. 事件可以绑定在组件上,当达到触发事件,就会执行逻辑层中对应的事件处理函数。 二. 如何使用事件 1. 简单来说就是将事件绑定到组件上面,bi…...
python哈希算法实现
以下是用Python实现SHA-256算法的示例代码: import hashlibdef sha256(message):# 创建SHA-256哈希对象sha256_hash hashlib.sha256()# 更新哈希对象的输入消息sha256_hash.update(message.encode(utf-8))# 计算哈希值并返回十六进制表示return sha256_hash.hexdi…...
SpringBoot实用开发(三)-- Redis提供API接口 -- StringRedisTemplate
引言: 由于redis内部不提供java对象的存储格式,因此当操作的数据以对象的形式存在时,会进行转码,转换成字符串格式后进行操作。为了方便开发者使用基于字符串为数据的操作,springboot整合redis时提供了专用的API接口StringRedisTemplate,你可以理解为这是RedisTe…...
【Qt-编码】
Qt编程指南 ■ 编码■ ASCII■ ANSI■ GB2312■ GBK■ GB18030 编码■ Unicode■ UTF-8: ■ Qt接收注射泵GBK编码后显示乱码■■ ■ 编码 ■ ASCII (American Standard Code for Information Interchange,美国信息交换标准代码)…...
使用Python实现Linux惠尔顿上网认证客户端
在本文中,我们将展示如何使用Python编写一个简单的脚本来实现Linux下的惠尔顿上网认证。以下是我们需要的参数和值: wholeton_host: 惠尔顿服务器地址,例如 192.168.10.10wholeton_user: 用户名,例如 AABBCCwholeton_pass: 密码&…...
【漏洞复现】某检测系统(admintool)接口任意文件上传漏洞
文章目录 前言声明一、漏洞详情二、影响版本三、漏洞复现四、修复建议 前言 湖南建研检测系统 admintool接口任意文件上传漏洞,攻击者可通过该漏洞获取服务器敏感信息。 声明 请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者…...
检测如下MHA运行条件【踩坑记录】
【masterha_check_ssh --conf/etc/mha/app1.cnf:SSH免密登录】 【错误信息1】 [error][/usr/share/perl5/vendor_perl/MHA/SSHCheck.pm, ln111] SSH connection from root10.0.0.53(10.0.0.53:22) to root10.0.0.51(10.0.0.51:22) failed! 【错误反馈】就是服务器…...
使用js编写一个函数判断所有数据类型的通用方法
一、typeof 在 JavaScript 里使用 typeof 来判断数据类型,只能区分基本类型,即 “number”,”string”,”undefined”,”boolean”,”object” 五种。 对于数组、对象来说,其关系错综复杂&…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...
UE5 音效系统
一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类,将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix,将上述三个类翻入其中,通过它管理每个音乐…...
验证redis数据结构
一、功能验证 1.验证redis的数据结构(如字符串、列表、哈希、集合、有序集合等)是否按照预期工作。 2、常见的数据结构验证方法: ①字符串(string) 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...
