当前位置: 首页 > news >正文

数据分析之词云图绘制

试验任务概述:如下为所给CSDN博客信息表,分别汇总了'ai', 'algo', 'big-data', 'blockchain', 'hardware', 'math', 'miniprog'等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计,绘制词频统计图,并根据词频统计的结果绘制词云图。

数据表链接:https://download.csdn.net/download/m0_52051577/88669409?spm=1001.2014.3001.5503 

import pandas as pd
data=pd.read_csv(open('D://实训课//实训课数据csdn.csv'),sep=',') //导入数据
data  //数据预览

如图,数据信息包括class、url、title、content四个类标签,分别表示博客所属领域类别、对应链接、博文题目和博客内容。下面第一步对这些博文按类别进行分类。

session=data.loc[:,'class'].values
set(session)//对数据表的class类别列切分
def classma(i):class1=data.loc[data['class']==class_list[i],:]print(class1)return class1
//定义切分函数,按类别列作为索引返回每一类别对应的数据信息
class_list=['ai', 'algo', 'big-data', 'blockchain', 'hardware', 'math', 'miniprog']
# for i in range(len(class_list)):
#     classma(i)
ai=classma(0)

分类结果如下图所示: 

 导入停用词表,对所分类数据进行停用词处理。

file_path='D:/..csv'
def getStopword(file_path):stop_list=[line[:-1] for line in open(file_path+'/哈工大停用词表 .txt','r',encoding='UTF-8')]return stop_list
getStopword(file_path)
import jieba 
def preProcess(all_data,stop_list):xdata=all_data['content']result_data=list(xdata)result=[]for doc in result_data:doc=doc.strip()cut_list=jieba.lcut(doc)doc_result=[word for word in cut_list if word not in stop_list]result.append(doc_result)return result# getStopword(file_path)
result1=preProcess(ai,getStopword(file_path))
print(result1)

 导入jieba库,对去除停用词后的数据进行分词处理,并返回分词后的结果。

 

后续是对分词后的词频进行统计,并计算每个分词的tf-idf值,这里引入一个tf-idf值的概念:

TF(词频)指的是一个词语在文档中出现的频率,它认为在一个文档中频繁出现的词语往往与文档的主题相关性更高。

from gensim.models.tfidfmodel import TfidfModel
from gensim import corpora
def calculate(resultx):dictionary=corpora.Dictionary(resultx)corpus=[dictionary.doc2bow(text) for text in resultx]tf_idf_model = TfidfModel(corpus, normalize=False)word_tf_tdf = list(tf_idf_model[corpus])print('词典:', dictionary.token2id)print('词频:', corpus)print('词的tf-idf值:', word_tf_tdf)return dictionary.token2id,corpus,word_tf_tdf
idic,corpus,word_tf_tdf=calculate(result1)

 

如上图,找出每个分词和与之相关联的词对应的下标。

max_pic=[]
max_fre=[]
def search(resultx,a):maxmum=[]idic,corpus,word_tf_tdf=calculate(resultx)for row in word_tf_tdf[a]:maxmum.append(row[1])for col in word_tf_tdf[a]:if col[1]==max(maxmum):print(max(maxmum))max_fre.append(max(maxmum))max_sig=col[0]max_pic.append(max_sig)return max_pic,max_fre
for i in range(len(word_tf_tdf)):search(result1,i)
print(max_pic)
print(max_fre)

对所有相关联的数对进行检索,采用特征提取方法对数据排序。并采用最大关联分析,找出每一个标签中与属性相关最大的词。 返回的是对应词的下标和对应的tf-idf值。

dictionary_s=idic
key_words=[]
for key,value in dictionary_s.items():if value in max_pic:key_words.append(key)
key_words.pop(-1)
print(key_words)

 构造关键词列表,根据之前返回的关联度最大词汇对应的下标,回到原数据表中定位,找出对应的词汇。

# 构造词频字典
dict_zip=dict(zip(key_words,max_fre))
print(dict_zip)

最后,根据词汇、词频列表绘制词云图。

# 绘制词云
from wordcloud import WordCloud
import matplotlib.pyplot as plt
def draw(y):my_cloud = WordCloud(background_color='white',  # 设置背景颜色  默认是blackwidth=900, height=600,max_words=100,            # 词云显示的最大词语数量font_path='simhei.ttf',   # 设置字体  显示中文max_font_size=99,         # 设置字体最大值min_font_size=16,         # 设置子图最小值random_state=50           # 设置随机生成状态,即多少种配色方案).generate_from_frequencies(y)# 显示生成的词云图片plt.imshow(my_cloud, interpolation='bilinear')# 显示设置词云图中无坐标轴plt.axis('off')plt.show()
draw(dict_zip)

 

注:以上为AI标签列对应的词云图,其他标签列词云图绘制的实现方式同此方法。就不再赘述。 

相关文章:

数据分析之词云图绘制

试验任务概述:如下为所给CSDN博客信息表,分别汇总了ai, algo, big-data, blockchain, hardware, math, miniprog等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计,绘制词频统计图,并根据词频统计的结果绘制词云图。…...

【赠书第13期】边缘计算系统设计与实践

文章目录 前言 1 硬件架构设计 2 软件框架设计 3 网络结构设计 4 安全性、可扩展性和性能优化 5 推荐图书 6 粉丝福利 前言 边缘计算是一种新兴的计算模式,它将计算资源推向网络边缘,以更好地满足实时性、低延迟和大规模设备连接的需求。边缘计算…...

数据库01_增删改查

1、什么是数据?什么是数据库? 数据:描述事物的符号记录称为数据。数据是数据库中存储的基本对象。数据库:存放数据的仓库,数据库中可以保存文本型数据、二进制数据、多媒体数据等数据 2、数据库的发展 第一阶段&…...

MySQL——进阶篇

二、进阶篇🚩 1. 存储引擎🍆 1.1 MSQL体系结构 连接层: 连接处理,连接认证,每个客户端的权限 服务层: 绝大部分核心功能,可跨存储引擎 可插拔存储引擎: 需要的时候可以添加或拔掉…...

Python 网络编程之搭建简易服务器和客户端

用Python搭建简易的CS架构并通信 文章目录 用Python搭建简易的CS架构并通信前言一、基本结构二、代码编写1.服务器端2.客户端 三、效果展示总结 前言 本文主要是用Python写一个CS架构的东西,包括服务器和客户端。程序运行后在客户端输入消息,服务器端会…...

往年面试精选题目(前50道)

常用的集合和区别,list和set区别 Map:key-value键值对,常见的有:HashMap、Hashtable、ConcurrentHashMap以及TreeMap等。Map不能包含重复的key,但是可以包含相同的value。 Set:不包含重复元素的集合&#…...

解决服务器Tab键不能补全问题

编辑~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml 命令&#xff1a;vim ~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml替换&#xff1a;<property name“<Super>Tab” type“string” value“switch_window…...

人工智能 机器学习 深度学习:概念,关系,及区别说明

如果过去几年&#xff0c;您读过科技主题的文章&#xff0c;您可能会遇到一些新词汇&#xff0c;如人工智能&#xff08;Artificial Intelligence&#xff09;、机器学习&#xff08;Machine Learning&#xff09;和深度学习&#xff08;Deep Learning&#xff09;等。这三个词…...

数据库——LAMP的搭建及MySQL基操

1.实验内容及原理 1. 在 Windows 系统中安装 VMWare 虚拟机&#xff0c;在 VMWare 中安装 Ubuntu 系统,并在 Ubuntu 中搭建 LAMP 实验环境。 2. 使用 MySQL 进行一些基本操作&#xff1a; &#xff08;1&#xff09;登录 MySQL&#xff0c;在 MySQL 中创建用户&#xff0c;并对…...

抗原设计与兔单B细胞技术的结合-卡梅德生物

随着生物医学研究的不断深入&#xff0c;抗体疗法作为治疗疾病的有力工具逐渐成为研究的焦点。而兔单B细胞技术作为抗体研究的创新方法&#xff0c;其与抗原设计的有机结合为获取定制抗体打开了崭新的创新之路。本文将深入探讨抗原设计与兔单B细胞技术相互融合的原理、优势&…...

在uniapp中使用背景渐变色与背景图不生效问题

list上有文字详情以及背景图&#xff0c;从背景可以看出是渐变色和 背景图片的结合。 因为使用到渐变色&#xff0c;所以要结合 background-blend-mode 属性来实现与背景图片叠加显示&#xff0c;否则只通过 background: linear-gradient(); background-image: url(); 设置不会…...

Java中XML的解析

1.采用第三方开元工具dom4j完成 使用步骤 1.导包dom4j的jar包 2.add as lib.... 3.创建核心对象, 读取xml得到Document对象 SAXReader sr new SAXReader(); Document doc sr.read(String path); 4.根据Document获取根元素对象 Element root doc.getRootElement(); …...

React快速入门之交互性

响应事件 创建事件处理函数 处理函数名常以handle事件名命名 function handlePlayClick() {alert(Playing);}传递事件处理函数 函数名、匿名两种方式&#xff01; function PlayButton() {function handlePlayClick() {alert(Playing);}return (<Button handleClick{handl…...

浅谈WPF之ToolTip工具提示

在日常应用中&#xff0c;当鼠标放置在某些控件上时&#xff0c;都会有相应的信息提示&#xff0c;从软件易用性上来说&#xff0c;这是一个非常友好的功能设计。那在WPF中&#xff0c;如何进行控件信息提示呢&#xff1f;这就是本文需要介绍的ToolTip【工具提示】内容&#xf…...

Android Studio 如何隐藏默认标题栏

目录 前言 一、修改清单文件 二、修改代码 三、更多资源 前言 在 Android 应用中&#xff0c;通常会有一个默认的标题栏&#xff0c;用于显示应用的名称和一些操作按钮。但是&#xff0c;在某些情况下&#xff0c;我们可能需要隐藏默认的标题栏&#xff0c;例如自定义标题栏…...

对于c++的总结与思考

笔者觉得好用的学习方法&#xff1a;模板法 1.采用原因&#xff1a;由于刚从c语言面向过程的学习中解脱出来&#xff0c;立即把思路从面向过程转到面向对象肯定不现实&#xff0c;加之全新的复杂语法与操作&#xff0c;着实给新手学习这门语言带来了不小的困难。所以&#xff…...

Flask 账号详情展示

Flask 账号详情展示 这段代码是一个基于Flask框架的Python应用程序。 它包含了两部分代码&#xff1a;Python代码和HTML代码。 web/templates/common/tab_account.html <div class"row border-bottom"><div class"col-lg-12"><div cla…...

软件测试/测试开发丨Pytest 参数化用例

参数化 通过参数的方式传递数据&#xff0c;从而实现数据和脚本分离。并且可以实现用例的重复生成与执行。 参数化应用场景 测试登录场景 测试登录成功&#xff0c;登录失败(账号错误&#xff0c;密码错误)创建多种账号: 中⽂文账号&#xff0c;英⽂文账号 普通测试用例方法 …...

MATLAB中./和/,.*和*,.^和^的区别

MATLAB中./和/&#xff0c;.*和*&#xff0c;.^ 和^ 的区别 MATLAB中./和/&#xff0c;.*和*&#xff0c;.^ 和^ 的区别./ 和 / 的区别.//实验实验结果 .* 和 * 的区别.**实验实验结果 .^ 和^ 的区别.^n^n实验运行结果 MATLAB中./和/&#xff0c;.和&#xff0c;.^ 和^ 的区别 …...

Flask 与微信小程序对接

Flask 与微信小程序的对接 在 web/controllers/api中增建py文件&#xff0c;主要是给微信小程序使用的。 web/controllers/init.py # -*- coding: utf-8 -*- from flask import Blueprint route_api Blueprint( api_page,__name__ )route_api.route("/") def ind…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...