当前位置: 首页 > news >正文

数据分析之词云图绘制

试验任务概述:如下为所给CSDN博客信息表,分别汇总了'ai', 'algo', 'big-data', 'blockchain', 'hardware', 'math', 'miniprog'等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计,绘制词频统计图,并根据词频统计的结果绘制词云图。

数据表链接:https://download.csdn.net/download/m0_52051577/88669409?spm=1001.2014.3001.5503 

import pandas as pd
data=pd.read_csv(open('D://实训课//实训课数据csdn.csv'),sep=',') //导入数据
data  //数据预览

如图,数据信息包括class、url、title、content四个类标签,分别表示博客所属领域类别、对应链接、博文题目和博客内容。下面第一步对这些博文按类别进行分类。

session=data.loc[:,'class'].values
set(session)//对数据表的class类别列切分
def classma(i):class1=data.loc[data['class']==class_list[i],:]print(class1)return class1
//定义切分函数,按类别列作为索引返回每一类别对应的数据信息
class_list=['ai', 'algo', 'big-data', 'blockchain', 'hardware', 'math', 'miniprog']
# for i in range(len(class_list)):
#     classma(i)
ai=classma(0)

分类结果如下图所示: 

 导入停用词表,对所分类数据进行停用词处理。

file_path='D:/..csv'
def getStopword(file_path):stop_list=[line[:-1] for line in open(file_path+'/哈工大停用词表 .txt','r',encoding='UTF-8')]return stop_list
getStopword(file_path)
import jieba 
def preProcess(all_data,stop_list):xdata=all_data['content']result_data=list(xdata)result=[]for doc in result_data:doc=doc.strip()cut_list=jieba.lcut(doc)doc_result=[word for word in cut_list if word not in stop_list]result.append(doc_result)return result# getStopword(file_path)
result1=preProcess(ai,getStopword(file_path))
print(result1)

 导入jieba库,对去除停用词后的数据进行分词处理,并返回分词后的结果。

 

后续是对分词后的词频进行统计,并计算每个分词的tf-idf值,这里引入一个tf-idf值的概念:

TF(词频)指的是一个词语在文档中出现的频率,它认为在一个文档中频繁出现的词语往往与文档的主题相关性更高。

from gensim.models.tfidfmodel import TfidfModel
from gensim import corpora
def calculate(resultx):dictionary=corpora.Dictionary(resultx)corpus=[dictionary.doc2bow(text) for text in resultx]tf_idf_model = TfidfModel(corpus, normalize=False)word_tf_tdf = list(tf_idf_model[corpus])print('词典:', dictionary.token2id)print('词频:', corpus)print('词的tf-idf值:', word_tf_tdf)return dictionary.token2id,corpus,word_tf_tdf
idic,corpus,word_tf_tdf=calculate(result1)

 

如上图,找出每个分词和与之相关联的词对应的下标。

max_pic=[]
max_fre=[]
def search(resultx,a):maxmum=[]idic,corpus,word_tf_tdf=calculate(resultx)for row in word_tf_tdf[a]:maxmum.append(row[1])for col in word_tf_tdf[a]:if col[1]==max(maxmum):print(max(maxmum))max_fre.append(max(maxmum))max_sig=col[0]max_pic.append(max_sig)return max_pic,max_fre
for i in range(len(word_tf_tdf)):search(result1,i)
print(max_pic)
print(max_fre)

对所有相关联的数对进行检索,采用特征提取方法对数据排序。并采用最大关联分析,找出每一个标签中与属性相关最大的词。 返回的是对应词的下标和对应的tf-idf值。

dictionary_s=idic
key_words=[]
for key,value in dictionary_s.items():if value in max_pic:key_words.append(key)
key_words.pop(-1)
print(key_words)

 构造关键词列表,根据之前返回的关联度最大词汇对应的下标,回到原数据表中定位,找出对应的词汇。

# 构造词频字典
dict_zip=dict(zip(key_words,max_fre))
print(dict_zip)

最后,根据词汇、词频列表绘制词云图。

# 绘制词云
from wordcloud import WordCloud
import matplotlib.pyplot as plt
def draw(y):my_cloud = WordCloud(background_color='white',  # 设置背景颜色  默认是blackwidth=900, height=600,max_words=100,            # 词云显示的最大词语数量font_path='simhei.ttf',   # 设置字体  显示中文max_font_size=99,         # 设置字体最大值min_font_size=16,         # 设置子图最小值random_state=50           # 设置随机生成状态,即多少种配色方案).generate_from_frequencies(y)# 显示生成的词云图片plt.imshow(my_cloud, interpolation='bilinear')# 显示设置词云图中无坐标轴plt.axis('off')plt.show()
draw(dict_zip)

 

注:以上为AI标签列对应的词云图,其他标签列词云图绘制的实现方式同此方法。就不再赘述。 

相关文章:

数据分析之词云图绘制

试验任务概述:如下为所给CSDN博客信息表,分别汇总了ai, algo, big-data, blockchain, hardware, math, miniprog等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计,绘制词频统计图,并根据词频统计的结果绘制词云图。…...

【赠书第13期】边缘计算系统设计与实践

文章目录 前言 1 硬件架构设计 2 软件框架设计 3 网络结构设计 4 安全性、可扩展性和性能优化 5 推荐图书 6 粉丝福利 前言 边缘计算是一种新兴的计算模式,它将计算资源推向网络边缘,以更好地满足实时性、低延迟和大规模设备连接的需求。边缘计算…...

数据库01_增删改查

1、什么是数据?什么是数据库? 数据:描述事物的符号记录称为数据。数据是数据库中存储的基本对象。数据库:存放数据的仓库,数据库中可以保存文本型数据、二进制数据、多媒体数据等数据 2、数据库的发展 第一阶段&…...

MySQL——进阶篇

二、进阶篇🚩 1. 存储引擎🍆 1.1 MSQL体系结构 连接层: 连接处理,连接认证,每个客户端的权限 服务层: 绝大部分核心功能,可跨存储引擎 可插拔存储引擎: 需要的时候可以添加或拔掉…...

Python 网络编程之搭建简易服务器和客户端

用Python搭建简易的CS架构并通信 文章目录 用Python搭建简易的CS架构并通信前言一、基本结构二、代码编写1.服务器端2.客户端 三、效果展示总结 前言 本文主要是用Python写一个CS架构的东西,包括服务器和客户端。程序运行后在客户端输入消息,服务器端会…...

往年面试精选题目(前50道)

常用的集合和区别,list和set区别 Map:key-value键值对,常见的有:HashMap、Hashtable、ConcurrentHashMap以及TreeMap等。Map不能包含重复的key,但是可以包含相同的value。 Set:不包含重复元素的集合&#…...

解决服务器Tab键不能补全问题

编辑~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml 命令&#xff1a;vim ~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml替换&#xff1a;<property name“<Super>Tab” type“string” value“switch_window…...

人工智能 机器学习 深度学习:概念,关系,及区别说明

如果过去几年&#xff0c;您读过科技主题的文章&#xff0c;您可能会遇到一些新词汇&#xff0c;如人工智能&#xff08;Artificial Intelligence&#xff09;、机器学习&#xff08;Machine Learning&#xff09;和深度学习&#xff08;Deep Learning&#xff09;等。这三个词…...

数据库——LAMP的搭建及MySQL基操

1.实验内容及原理 1. 在 Windows 系统中安装 VMWare 虚拟机&#xff0c;在 VMWare 中安装 Ubuntu 系统,并在 Ubuntu 中搭建 LAMP 实验环境。 2. 使用 MySQL 进行一些基本操作&#xff1a; &#xff08;1&#xff09;登录 MySQL&#xff0c;在 MySQL 中创建用户&#xff0c;并对…...

抗原设计与兔单B细胞技术的结合-卡梅德生物

随着生物医学研究的不断深入&#xff0c;抗体疗法作为治疗疾病的有力工具逐渐成为研究的焦点。而兔单B细胞技术作为抗体研究的创新方法&#xff0c;其与抗原设计的有机结合为获取定制抗体打开了崭新的创新之路。本文将深入探讨抗原设计与兔单B细胞技术相互融合的原理、优势&…...

在uniapp中使用背景渐变色与背景图不生效问题

list上有文字详情以及背景图&#xff0c;从背景可以看出是渐变色和 背景图片的结合。 因为使用到渐变色&#xff0c;所以要结合 background-blend-mode 属性来实现与背景图片叠加显示&#xff0c;否则只通过 background: linear-gradient(); background-image: url(); 设置不会…...

Java中XML的解析

1.采用第三方开元工具dom4j完成 使用步骤 1.导包dom4j的jar包 2.add as lib.... 3.创建核心对象, 读取xml得到Document对象 SAXReader sr new SAXReader(); Document doc sr.read(String path); 4.根据Document获取根元素对象 Element root doc.getRootElement(); …...

React快速入门之交互性

响应事件 创建事件处理函数 处理函数名常以handle事件名命名 function handlePlayClick() {alert(Playing);}传递事件处理函数 函数名、匿名两种方式&#xff01; function PlayButton() {function handlePlayClick() {alert(Playing);}return (<Button handleClick{handl…...

浅谈WPF之ToolTip工具提示

在日常应用中&#xff0c;当鼠标放置在某些控件上时&#xff0c;都会有相应的信息提示&#xff0c;从软件易用性上来说&#xff0c;这是一个非常友好的功能设计。那在WPF中&#xff0c;如何进行控件信息提示呢&#xff1f;这就是本文需要介绍的ToolTip【工具提示】内容&#xf…...

Android Studio 如何隐藏默认标题栏

目录 前言 一、修改清单文件 二、修改代码 三、更多资源 前言 在 Android 应用中&#xff0c;通常会有一个默认的标题栏&#xff0c;用于显示应用的名称和一些操作按钮。但是&#xff0c;在某些情况下&#xff0c;我们可能需要隐藏默认的标题栏&#xff0c;例如自定义标题栏…...

对于c++的总结与思考

笔者觉得好用的学习方法&#xff1a;模板法 1.采用原因&#xff1a;由于刚从c语言面向过程的学习中解脱出来&#xff0c;立即把思路从面向过程转到面向对象肯定不现实&#xff0c;加之全新的复杂语法与操作&#xff0c;着实给新手学习这门语言带来了不小的困难。所以&#xff…...

Flask 账号详情展示

Flask 账号详情展示 这段代码是一个基于Flask框架的Python应用程序。 它包含了两部分代码&#xff1a;Python代码和HTML代码。 web/templates/common/tab_account.html <div class"row border-bottom"><div class"col-lg-12"><div cla…...

软件测试/测试开发丨Pytest 参数化用例

参数化 通过参数的方式传递数据&#xff0c;从而实现数据和脚本分离。并且可以实现用例的重复生成与执行。 参数化应用场景 测试登录场景 测试登录成功&#xff0c;登录失败(账号错误&#xff0c;密码错误)创建多种账号: 中⽂文账号&#xff0c;英⽂文账号 普通测试用例方法 …...

MATLAB中./和/,.*和*,.^和^的区别

MATLAB中./和/&#xff0c;.*和*&#xff0c;.^ 和^ 的区别 MATLAB中./和/&#xff0c;.*和*&#xff0c;.^ 和^ 的区别./ 和 / 的区别.//实验实验结果 .* 和 * 的区别.**实验实验结果 .^ 和^ 的区别.^n^n实验运行结果 MATLAB中./和/&#xff0c;.和&#xff0c;.^ 和^ 的区别 …...

Flask 与微信小程序对接

Flask 与微信小程序的对接 在 web/controllers/api中增建py文件&#xff0c;主要是给微信小程序使用的。 web/controllers/init.py # -*- coding: utf-8 -*- from flask import Blueprint route_api Blueprint( api_page,__name__ )route_api.route("/") def ind…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...