当前位置: 首页 > news >正文

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.孔雀算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用孔雀算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.孔雀算法

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440
孔雀算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

孔雀算法参数如下:

%% 设定孔雀优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明孔雀算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.孔雀算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Redis自动部署脚本编写

#!/bin/bash ck_ok() { if [ $? -ne 0 ] then echo "$1 error." exit 1 fi } download_redis() { cd /usr/local/src if [ -f redis-7.0.4.tar.gz ] then echo "当前目录已经存在redis-7.0.4.tar.gz&q…...

Tinker 环境下数据表的用法

如果我们要自己手动创建一个模型文件,最简单的方式是通过 make:model 来创建。 php artisan make:model Article 删除模型文件 rm app/Models/Article.php 创建模型的同时顺便创建数据库迁移 php artisan make:model Article -m Eloquent 表命名约定 在该文件中&am…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之线性布局容器Row组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之线性布局容器Row组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Row组件 沿水平方向布局容器。 子组件 可以包含子组件。 接口 Row(…...

JAVA——JDBC学习

视频连接:https://www.bilibili.com/video/BV1sK411B71e/?spm_id_from333.337.search-card.all.click&vd_source619f8ed6df662d99db4b3673d1d3ddcb 《视频讲解很详细!!推荐》 JDBC(Java DataBase Connectivity Java数据库连…...

Flask 用户信息编辑系统

Flask 用户信息编辑系统 web/templates/user/edit.html {% extends "common/layout_main.html" %} {% block content %} {% include "common/tab_user.html" %} <div class"row m-t user_edit_wrap"><div class"col-lg-12"…...

Spring DefaultListableBeanFactory源码分析

目录 一、概述 二、主要功能 三、核心功能解析 Bean定义的存储结构 ConcurrentHashMap的使用和意义 四、总结 一、概述 DefaultListableBeanFactory 是 Spring 框架中的一个核心类&#xff0c;它继承自AbstractAutowireCapableBeanFactory类&#xff0c;实现了 ListableBeanF…...

关于MySQL、分布式系统、SpringCloud面试题

前言 之前为了准备面试&#xff0c;收集整理了一些面试题。 本篇文章更新时间2023年12月27日。 最新的内容可以看我的原文&#xff1a;https://www.yuque.com/wfzx/ninzck/cbf0cxkrr6s1kniv MySQL 索引 说一下有哪些锁&#xff1f; 行锁有哪些&#xff1f; 性能优化 分库分表…...

2023年中职“网络安全”——B-5:网络安全事件响应(Server2216)

B-5&#xff1a;网络安全事件响应 任务环境说明&#xff1a; 服务器场景&#xff1a;Server2216&#xff08;开放链接&#xff09; 用户名:root密码&#xff1a;123456 1、黑客通过网络攻入本地服务器&#xff0c;通过特殊手段在系统中建立了多个异常进程&#xff0c;找出启…...

【论文解读】Learning based fast H.264 to H.265 transcoding

时间&#xff1a; 2015 年 级别&#xff1a; APSIPA 机构&#xff1a; 上海电力大学 摘要 新提出的视频编码标准HEVC (High Efficiency video coding)以其比H.264/AVC更好的编码效率&#xff0c;被工业界和学术界广泛接受和采用。在HEVC实现了约40%的编码效率提升的同时&…...

[vue]Echart使用手册

[vue]Echart使用手册 使用环境Echart的使用Echart所有组件和图表类型Echart 使用方法 使用环境 之前是在JQuery阶段使用Echart&#xff0c;直接引入Echart的js文件即可&#xff0c;现在是在vue中使用,不仅仅时echarts包&#xff0c;还需要安装vue-echarts&#xff1a; "…...

视频人脸识别马赛克处理

文章目录 前言一、实现思路&#xff1f;二、Coding三、实现效果 前言 前面几篇文章我们尝试了使用opencv完成图像人脸识别以及识别后贴图或者打马赛克的方法。 偶尔我们也会有需求在视频中将人脸马赛克化&#xff0c;opencv也提供了相应的方法来实现这个功能。 一、实现思路&a…...

2023-12-27 Python PC获取鼠标位置,移动鼠标到相应的位置 定时自动模拟鼠标点击,用于简单测试app用

一、核心源码如下&#xff1a; import pyautogui import timepyautogui.moveTo(600, 800) for i in range(20):time.sleep(0.1)x, y pyautogui.position()print("mouse position:", x, y)pyautogui.click()二、定时自动模拟鼠标点击&#xff0c;模拟键盘按键 impo…...

如何解决服务器CA证书过期的问题

一、问题的提出 最近在学习VPS&#xff0c;在Linux系统里给服务器安装某项服务时&#xff0c;在服务的log里看到下面的错误信息&#xff1a; failed to verify certificate: x509: certificate has expired or is not yet valid: current time 2023-12-25T04:42:38-05:00 is a…...

计算机基础面试题总结

47、OSI、TCP/IP、五层协议的体系结构以及各层协议 OSI分层&#xff08;7层&#xff09;&#xff1a;物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 TCP/IP分层&#xff08;4层&#xff09;&#xff1a;网络接口层、网际层、运输层、应用层。 五层协议&…...

【算法练习】leetcode链表算法题合集

链表总结 增加表头元素倒数节点&#xff0c;使用快慢指针环形链表&#xff08;快慢指针&#xff09;合并有序链表&#xff0c;归并排序LRU缓存 算法题 删除链表元素 删除链表中的节点 LeetCode237. 删除链表中的节点 复制后一个节点的值&#xff0c;删除后面的节点&#x…...

2023.12.28每日一题

LeetCode每日一题 2735.收集巧克力 2735. 收集巧克力 - 力扣&#xff08;LeetCode&#xff09; 介绍 看题目看不懂&#xff0c;在评论区看到一个大哥解释&#xff0c;瞬间明白了。 一张桌子上有n件商品围成一圈&#xff0c;每件都有一个价签&#xff0c;它们构成数组nums。…...

231227-9步在RHEL8.8配置本地yum源仓库

Seciton 1&#xff1a;参考视频 RHEL8配置本地yum源仓库-安徽迪浮_哔哩哔哩_bilibili Seciton 2&#xff1a;具体操作 &#x1f3af; 第1步&#xff1a;查看光驱文件/dev/sr0是否已经挂载&#xff1f;此处已挂在 [lgklocalhost ~]$ df -h &#x1f3af; 第1步&#xff1a;查看…...

5. 创建型模式 - 单例模式

亦称&#xff1a; 单件模式、Singleton 意图 单例模式是一种创建型设计模式&#xff0c; 让你能够保证一个类只有一个实例&#xff0c; 并提供一个访问该实例的全局节点。 问题 单例模式同时解决了两个问题&#xff0c; 所以违反了单一职责原则&#xff1a; 保证一个类只有一…...

机器学习之人工神经网络(Artificial Neural Networks,ANN)

人工神经网络(Artificial Neural Networks,ANN)是机器学习中的一种模型,灵感来源于人脑的神经网络结构。它由神经元(或称为节点)构成的层级结构组成,每个神经元接收输入并生成输出,这些输入和输出通过权重进行连接。 人工神经网络(ANN)是一种模仿生物神经系统构建的…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...