代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组
代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组
300.最长递增子序列
题目介绍
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
思路解析
本题的一个难点在于子序列可以不连续,那么我们如何能够确定这个子序列呢?
动规五部曲
-
确定dp数组及其下标含义
dp[i]:表示以第i个元素为结尾的严格递增子序列(必须包括第i个)
-
递推公式
for (int j = 0; j < i; j++) { //[0,j]+i部分的区域j、i必取if (nums[i] > nums[j])dp[i] = Integer.max(dp[i], dp[j] + 1); }这里的关键之处,要遍历以下标j为结尾的前区间,如此循环遍历,最终即可得到以下标i结尾的最长严格子序列。
结果不是最后一位dp数值,所以我们需要记录过程中的最大值
-
初始化dp数组
Arrays.fill(dp,1);每个位置保底为1,对应它本身
-
确定遍历顺序
正序遍历即可
-
打印dp数组检验
本题关键要确定dp数组及其下标含义,还要想到循环遍历得到结果,复杂度O(n2)O(n^2)O(n2)
class Solution {int result = 1;public int lengthOfLIS(int[] nums) {int[] dp = new int[nums.length];//以第i个元素为结尾的最长严格递增子序列Arrays.fill(dp,1);for (int i = 1; i < nums.length; i++) {for (int j = 0; j < i; j++) { //[0,j]+i部分的区域j、i必取if (nums[i] > nums[j])dp[i] = Integer.max(dp[i], dp[j] + 1);}result = Integer.max(dp[i], result);}return result;}
}
674. 最长连续递增序列
题目介绍
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
个人思路
本题相比于上一题简单不少,因为它有个连续的限制,我们不需要再遍历就可以直接确定dp数组的每个元素
直接上代码了
class Solution {public int findLengthOfLCIS(int[] nums) {int result = 1;int[] dp = new int[nums.length];dp[0] = 1;for (int i = 1; i < nums.length; i++) {dp[i] = nums[i] > nums[i - 1] ? dp[i - 1] + 1 : 1;result = Integer.max(result, dp[i]);}return result;}
}
718. 最长重复子数组
题目介绍
给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。
示例 1:
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。
示例 2:
输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5
个人思路
本题相较于前两题难点在于,这里给了两个数组,所以我们考虑使用二维dp数组来记录一些中间状态。注意到本题要求,连续子序列,所以这道题其实就是上一题的二维升级版
不难得出递推公式:dp[i][j] = nums1[i] == nums2[j] ? dp[i - 1][j - 1] + 1 : 0;
由此可以推出初始化操作,必须把0下标位置初始化好,避免越界问题
动规五部曲
-
确定dp数组及其下标含义
int[][] dp = new int[nums1.length][nums2.length];dp[i][j]表示下标[i]、[j]位置为结尾的两子串符合条件的最大长度 -
递推公式的确定
dp[i][j] = nums1[i] == nums2[j] ? dp[i - 1][j - 1] + 1 : 0; -
初始化dp数组
for (int i = 0; i < nums1.length; i++) {dp[i][0] = nums1[i] == nums2[0] ? 1 : 0;result = Integer.max(result, dp[i][0]); } for (int i = 0; i < nums2.length; i++) {dp[0][i] = nums1[0] == nums2[i] ? 1 : 0;result = Integer.max(result, dp[0][i]); }由递推公式推出
-
确定遍历顺序
两层for循环,正序遍历即可
-
打印dp数组检验
class Solution {public int findLength(int[] nums1, int[] nums2) {int result = 0;int[][] dp = new int[nums1.length][nums2.length];//以i.j为结尾的符合条件的子数组最长长度for (int i = 0; i < nums1.length; i++) {dp[i][0] = nums1[i] == nums2[0] ? 1 : 0;result = Integer.max(result, dp[i][0]);}for (int i = 0; i < nums2.length; i++) {dp[0][i] = nums1[0] == nums2[i] ? 1 : 0;result = Integer.max(result, dp[0][i]);}for (int i = 1; i < nums1.length; i++) {for (int j = 1; j < nums2.length; j++) {dp[i][j] = nums1[i] == nums2[j] ? dp[i - 1][j - 1] + 1 : 0;result = Integer.max(result, dp[i][j]);}}return result;}
}
相关文章:
代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组
代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组 300.最长递增子序列 题目介绍 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或…...
gitblit 安装使用
1 安装服务端 简而言之:需要安装 java,gitblit, git 三个软件 Windows 10环境使用Gitblit搭建局域网Git服务器 前言 安装Java并配置环境安装gitblit并配置启动gitblit为windows服务使用gitblit创建repository并管理用户 1.1 安装Java并配…...
使用 TensorFlow、Keras-OCR 和 OpenCV 从技术图纸中获取信息
简单介绍输入是技术绘图图像。对象检测模型获取图像后对其进行分类,找到边界框,分配维度,计算属性。示例图像(输入)分类后,找到“IPN”部分。之后,它计算属性,例如惯性矩。它适用于不…...
ESP32设备驱动-GUVA-S12SD紫外线检测传感器驱动
GUVA-S12SD紫外线检测传感器驱动 文章目录 GUVA-S12SD紫外线检测传感器驱动1、GUVA-S12SD介绍2、硬件准备3、软件准备4、驱动实现1、GUVA-S12SD介绍 GUVA-S12SD 紫外线传感器芯片适用于检测太阳光中的紫外线辐射。 它可用于任何需要监控紫外线量的应用,并且可以简单地连接到任…...
WIN7下 program file 权限不足?咋整?!!
在WIN7下对Program Files目录的权限问题 [问题点数:40分,结帖人mysunck] 大部分人说要使用manifest,但是其中一个人说: “安装程序要求管理员很正常,你的程序可以在programfiles,但用户数据不能放那里,因…...
119.(leaflet篇)文字碰撞
听老人家说:多看美女会长寿 地图之家总目录(订阅之前建议先查看该博客) 文章末尾处提供保证可运行完整代码包,运行如有问题,可“私信”博主。 效果如下所示: 下面献上完整代码,代码重要位置会做相应解释 <!DOCTYPE html> <html>...
cuda编程以及GPU基本知识
目录CPU与GPU的基本知识CPU特点GPU特点GPU vs. CPU什么样的问题适合GPU?GPU编程CUDA编程并行计算的整体流程CUDA编程术语:硬件CUDA编程术语:内存模型CUDA编程术语:软件线程块(Thread Block)网格(…...
Python 机器学习/深度学习/算法专栏 - 导读目录
目录 一.简介 二.机器学习 三.深度学习 四.数据结构与算法 五.日常工具 一.简介 Python 机器学习、深度学习、算法主要是博主从研究生到工作期间接触的一些机器学习、深度学习以及一些算法的实现的记录,从早期的 LR、SVM 到后期的 Deep,从学习到工…...
Springboot怎么实现restfult风格Api接口
前言在最近的一次技术评审会议上,听到有同事发言说:“我们的项目采用restful风格的接口设计,开发效率更高,接口扩展性更好...”,当我听到开头第一句,我脑子里就开始冒问号:项目里的接口用到的是…...
Jetpack Compose 深入探索系列六:Compose runtime 高级用例
Compose runtime vs Compose UI 在深入讨论之前,非常重要的一点是要区分 Compose UI 和 Compose runtime。Compose UI 是 Android 的新 UI 工具包,具有 LayoutNodes 的树形结构,它们稍后在画布上绘制其内容。Compose runtime 提供底层机制和…...
23.3.2 Codeforces Round #834 (Div. 3) A~E
FG明天补 A-Yes-Yes? 题面翻译 给定 ttt 个字符串,请判定这些字符串是否分别是 YesYesYesYes…\texttt{YesYesYesYes\dots}YesYesYesYes… 的子串。是则输出 YES,否则输出 NO(YES 和 NO 大小写不定)。 Translated by JYqwq …...
一次失败的面试经历:我只想找个工作,你却用面试题羞辱我!
金三银四近在咫尺,即将又是一波求职月,面对跳槽的高峰期,很多软件测试人员都希望能拿一个满意的高薪offer,但是随着招聘职位的不断增多,面试的难度也随之加大,而面试官更是会择优录取小王最近为面试已经焦头…...
java版工程管理系统 Spring Cloud+Spring Boot+Mybatis实现工程管理系统源码
java版工程管理系统Spring CloudSpring BootMybatis实现工程管理系统 工程项目各模块及其功能点清单 一、系统管理 1、数据字典:实现对数据字典标签的增删改查操作 2、编码管理:实现对系统编码的增删改查操作 3、用户管理:管理和…...
附录3-大事件项目后端-项目准备工作,config.js,一些库的简易用法,main.js
目录 1 一些注意 2 创建数据库 3 项目结构 4 配置文件 config.js 5 参数规则包 hapi/joi与escook/express-joi 5.1 安装 5.2 文档中的demo 5.2.1 定义规则 5.2.2 使用规则 5.3 项目中的使用 5.3.1 定义信息规则 5.3.2 使用规则 6 密码加密包 bcrypt.…...
并发编程-线程
并发编程-线程 一个进程是操作系统中运行的一个任务,进程独立拥有CPU、内存等资源一个线程是一个进程中运行的一个任务,线程之间共享CPU、内存等资源,进程里的每一个任务都是线程。 线程创建 创建线程:使用threading模块中的Th…...
图解LeetCode——剑指 Offer 34. 二叉树中和为某一值的路径
一、题目 给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。叶子节点 是指没有子节点的节点。 二、示例 2.1> 示例 1: 【输入】root [5,4,8,11,null,13,4,7,2,null,null,5,1], t…...
使用Python免费试用最新Openai API
一、背景介绍 3月2日凌晨,OpenAI放出了真正的ChatGPT API,不是背后的GPT-3.5大模型,是ChatGPT的本体模型!ChatGPT API价格为1k tokens/$0.002,等于每输出100万个单词,价格才2.7美金(约18元人民…...
04、启动 SVN 服务器端程序
启动 SVN 服务器端程序1 概述2 用命令行单项目启动2.1 采用 svnserve 命令2.2 验证服务是否启动2.3 命令行方式的缺陷3 注册Windows服务3.1 注册服务的命令3.2 命令说明3.3 启动服务1 概述 SVN 服务器和 Tomcat 服务器,Nexus 服务器一样, 必须处于运行状态才能响应…...
jsp船舶引航计费网站Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 JSP船舶引航计费网站是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5.0&…...
Allegro如何画半圆形的线操作指导
Allegro如何画半圆形的线操作指导 在用Allegro设计PCB的时候,在某些应用场合会需要画半圆形,如下图 如何画半圆形,具体操作如下 点击Add点击Arc w/Radius...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
