yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理
综述
为了解决旋转目标检测问题,研究者们提出了多种方法和算法。以下是一些常见的旋转目标检测方法:
- 基于滑动窗口的方法:在图像上以不同的尺度和角度滑动窗口,通过分类器判断窗口中是否存在目标。这种方法简单直观,但计算量大且效果依赖于窗口的尺度和角度设置。
- 基于特征提取的方法:利用图像特征提取技术,如SIFT、HOG、CNN等,获取目标的特征表示,再通过分类器进行目标检测。这种方法能够较好地处理目标的旋转变化,但对特征提取的准确性和鲁棒性有一定要求。
- 基于区域提取的方法:利用图像的局部区域信息进行目标检测,如Selective
Search、EdgeBoxes等。这种方法在目标的旋转变化下具有一定的鲁棒性,但对目标的形状和尺度变化敏感。 - 基于深度学习的方法:利用深度学习技术,如卷积神经网络(CNN)、循环神经网络(RNN)等,学习图像中目标的特征表示,并通过回归或分类模型实现目标检测。这种方法在旋转目标检测上取得了显著的效果提升,但需要大量的标注数据和计算资源。
简介
-
YOLOv5:YOLOv5是一种基于深度学习的目标检测算法,它采用了轻量级网络结构,具有较快的检测速度和较高的准确率。
-

-
旋转目标检测:传统的目标检测算法主要针对水平或垂直方向的目标,而在遥感图像和无人机应用中,目标常常以各种角度出现。因此,针对旋转目标的检测成为一个重要的研究方向。
-
遥感图像检测:遥感图像通常包含了大范围的地理信息,如建筑物、道路、农田等。利用YOLOv5进行遥感图像检测可以快速准确地识别出这些目标,从而帮助农业、城市规划等应用
-
无人机旋转目标检测:无人机在航拍过程中,由于姿态变化和目标运动,导致拍摄到的目标可能以各种角度存在。利用YOLOv5进行无人机旋转目标检测可以有效地识别出目标,并进行跟踪或其他后续处理。
-
数据集和训练:为了实现旋转目标检测,需要准备旋转目标的数据集,并对YOLOv5进行相应的调整和训练。数据集可以包含具有各种旋转角度的目标图像,并进行标注。
-
模型调优:针对旋转目标检测任务,可能需要对YOLOv5模型进行一些调优,例如增加网络层数、调整损失函数等,以提升检测准确率和鲁棒性。

代码安装
安装要求:
- Linux(建议使用);Windows(不建议使用,请参考此问题,如果您在生成utils/nms_rotated_ext.cpython-XX-XX-XX-XX.so方面遇到困难)
- Python 3.7+
- PyTorch ≥ 1.7
- CUDA 9.0或更高版本
我已经测试了以下操作系统和软件版本:
- 操作系统:Ubuntu 16.04/18.04
- CUDA:10.0/10.1/10.2/11.3
安装步骤:
a. 创建conda虚拟环境并激活,例如:
conda create -n Py39_Torch1.10_cu11.3 python=3.9 -y
source activate Py39_Torch1.10_cu11.3
b. 确保您的CUDA运行时API版本≤CUDA驱动程序版本。 (例如11.3 ≤ 11.4)
nvcc -V
nvidia-smi
c. 按照官方说明安装PyTorch和torchvision,确保cudatoolkit版本与CUDA运行时API版本相同,例如:
pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
nvcc -V
python
import torch
torch.version.cuda
exit()
pip install -r requirements.txt
cd utils/nms_rotated
python setup.py develop #或"pip install -v -e ."
运行demo
Usage:$ python path/to/detect.py --weights yolov5_rotate.pt --source 0 # webcamimg.jpg # imagevid.mp4 # videopath/ # directorypath/*.jpg # glob'https://youtu.be/Zgi9g1ksQHc' # YouTube'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
结果展示

结论
选择毕业设计课题需要考虑以下几个因素:
- 兴趣和专业方向:选择自己感兴趣并且符合自己专业方向的课题,可以让你更加投入和热情地完成毕业设计,并提升自己相关领域的技能。
- 实用性和社会需求:选择具有实用性和社会需求的课题,可以使你的毕业设计有更大的实际意义和应用前景。
- 研究难度和可行性:选择既有一定的研究难度,但又具备可行性和实现可能性的课题,可以保证你能够完成毕业设计,并取得较好的成果。
代码获取、论文指导、作业帮助、毕设达标——qq1309399183
- 资源和指导教师:选择具有充足资源和提供指导支持的课题,可以让你在毕业设计中得到更好的实践和研究经验,并且顺利完成毕业设计
相关文章:
yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理
综述 为了解决旋转目标检测问题,研究者们提出了多种方法和算法。以下是一些常见的旋转目标检测方法: 基于滑动窗口的方法:在图像上以不同的尺度和角度滑动窗口,通过分类器判断窗口中是否存在目标。这种方法简单直观,…...
Qt学习:Qt的意义安装Qt
Qt 的简介 QT 是一个跨平台的 C图形用户界面应用程序框架。它为程序开发者提供图形界面所需的所有功能。它是完全面向对象的,很容易扩展,并且允许真正地组件编程。 支持平台 xP 、 Vista、Win7、win8、win2008、win10Windows . Unix/Linux: Ubuntu 等…...
Anylogic Pro 8.8.x for Mac / for Linux Crack
Digital twins – a step towards a digital enterprise AnyLogic是唯一一个支持创建模拟模型的方法的模拟建模工具:面向过程(离散事件)、系统动态和代理,以及它们的任何组合。AnyLogic提供的建模语言的独特性、灵活性和强大性使…...
ROS无人机初始化GPS定位漂移误差,确保无人机稳定飞行
引言: 由于GPS在室外漂移的误差比较大,在长时间静止后启动,程序发布的位置可能已经和预期的位置相差较大,导致无法完成任务,尤其是气压计的数据不准,可能会导致无人机不能起飞或者一飞冲天。本文主要是在进…...
k8s网络类型
k8s中的通信模式: pod内部之间容器与容器之间的通信。 在同一个pod中的容器共享资源和网络,使用同一个网络命名空间。可以直接通信的。 同一个node节点之内,不同pod之间的通信。 每一个pod都有一个全局的真实的IP地址,同一个n…...
Seata 中封装了四种分布式事务模式,分别是: AT 模式, TCC 模式, Saga 模式, XA 模式,
文章目录 seata概述Seata 中封装了四种分布式事务模式,分别是:AT 模式,TCC 模式,Saga 模式,XA 模式, 今天我们来聊聊seata seata 概述 在微服务架构下,由于数据库和应用服务的拆分,…...
为什么设计制造行业需要数据加密?
设计制造行业是一个涉及多种技术、工艺、材料和产品的广泛领域,它对经济和社会的发展有着重要的影响。然而,随着数字化、智能化和网络化的发展,设计制造行业也面临着越来越多的数据安全风险,如数据泄露、数据篡改、数据窃取等。这…...
查看ios app运行日志
摘要 本文介绍了一款名为克魔助手的iOS应用日志查看工具,该工具可以方便地查看iPhone设备上应用和系统运行时的实时日志和奔溃日志。同时还提供了奔溃日志分析查看模块,可以对苹果奔溃日志进行符号化、格式化和分析,极大地简化了开发者的调试…...
怎么卸载macOS上的爱思助手如何卸载macOS上的logitech g hub,如何卸载顽固macOS应用
1.在App Store里下载Cleaner One Pro (注意,不需要订阅付费!!!白嫖基础功能就完全够了!!!) 2.运行软件,在左侧目录中选择“应用程序管理”,然后点…...
侦探IP“去推理化”:《名侦探柯南》剧场版走过26年
2023年贺岁档,柯南剧场版的第26部《黑铁的鱼影》如期上映。 这部在日本狂卷票房128亿日元的作品,被誉为有史以来柯南剧场版在商业成绩上最好的一部。 但该作在4月份日本还未上映前,就于国内陷入了巨大的争议。 试映内容里,灰原…...
图论 经典例题
1 拓扑排序 对有向图的节点排序,使得对于每一条有向边 U-->V U都出现在V之前 *有环无法拓扑排序 indegree[], nxs[];//前者表示节点 i 的入度,后者表示节点 i 指向的节点 queue [] for i in range(n):if indege[i] 0: queue.add(i)// 入度为0的节…...
Oracle数据updater如何回滚
1.查询update语句执行的时间节点 ; select t.FIRST_LOAD_TIME, t.SQL_TEXT from v$sqlarea t where to_char(t.FIRST_LOAD_TIME) > 2023-03-19/17:00:00 order by t.FIRST_LOAD_TIME desc;开启表的行迁移 alter table test enable row movement;3.回滚表数据到…...
redis开启密码验证
开启密码验证 (1)配置文件中设置 redis.conf文件里面配置requirepass参数,redis认证密码:foobared,然后重启redis服务 ./redis-cli 127.0.0.1:6379> 127.0.0.1:6379> 127.0.0.1:6379> CONFIG SET requi…...
一种删除 KubeSphere 中一直卡在 Terminating 的 Namespace--KubeSphere Logging System的简单方法
文章目录 一、问题提出二、删除方法1,获取kubesphere-logging-syste的详细信息json文件2,编辑kubesphere-logging-system.json3,执行清理命令 三、检查结果 一、问题提出 在使用 KubeSphere 的时候发现有一个日志服务KubeSphere Logging Sys…...
Flink1.17实战教程(第七篇:Flink SQL)
系列文章目录 Flink1.17实战教程(第一篇:概念、部署、架构) Flink1.17实战教程(第二篇:DataStream API) Flink1.17实战教程(第三篇:时间和窗口) Flink1.17实战教程&…...
nest定时任务调用service报错
报错: ERROR [Scheduler] ValidationError: Using global EntityManager instance methods for context specific actions is disallowed. If you need to work with the global instances identity map, use allowGlobalContext configuration option or fork() i…...
[Angular] 笔记 11:可观察对象(Observable)
chatgpt: 在 Angular 中,Observables 是用于处理异步数据流的重要工具。它们被广泛用于处理从异步操作中获取的数据,比如通过 HTTP 请求获取数据、定时器、用户输入等。Observables 提供了一种机制来订阅这些数据流,并可以在数据到达时执行相…...
【论文阅读】Resource Allocation for Text Semantic Communications
这是一篇关于语义通信中资源分配的论文。全文共5页,篇幅较短。 目录在这里 摘要关键字引言语义通信资源分配贡献公式符号 系统模型DeepSC TransmitterTransmission ModelDeepSC Receiver 语义感知资源分配策略Semantic Spectral Efficiency (S-SE&#…...
VMware16 pro 安装openEuler-23.09-x86_64,详细操作流程+详图。
1.环境: win11, vmware16 pro, openEuler-23.09-x86_64-dvd.iso 社区版openEuler 23.09官方下载地址: openEuler下载 | 欧拉系统ISO镜像 | openEuler社区官网欧拉操作系统(openEuler, 简称“欧拉”)是面向数字基础设施的操作系统,支持服务器、云计算、…...
Mybatis 动态 SQL - script,bind,多数据库支持
script 在使用注解的映射器类中使用动态SQL时,可以使用<script>元素。例如: Update({"<script>","update Author"," <set>"," <if testusername ! null>username#{username},</if&g…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?
在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...
