当前位置: 首页 > news >正文

注意力机制详解系列(五):分支与时间注意力机制

在这里插入图片描述

👨‍💻作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享,公众号:GoAI的学习小屋,免费分享书籍、简历、导图等资料,更有学习交流群分享AI和大数据资料,加群方式加公众号回复“加群”即可。
🎉专栏推荐: 目前在写CV方向专栏,更新不限于目标检测、OCR、图像分类、图像分割等方向,目前活动仅19.9,虽然付费但会长期更新,感兴趣的小伙伴可以关注下➡️专栏地址
🎉学习者福利: 强烈推荐一个优秀AI学习网站,包括机器学习、深度学习等理论与实战教程,非常适合AI学习者。➡️网站链接。
🎉技术控福利: 程序员兼职社区招募!技术范围广,CV、NLP方向均可,要求有一定基础,最好是研究生及以上或有工作经验,欢迎大佬加入!群内Python、c++、Matlab等各类编程语言单应有尽有, 资源靠谱、费用自谈,有意向➡️访问。


📝导读:本篇为注意力机制系列第三篇,主要介绍注意力机制中的空间注意力机制,对空间注意力机制方法进行详细讲解,会对重点论文会进行标注 * ,并配上论文地址和对应代码。

🆙注意力机制详解系列目录:
1️⃣注意力机制详解系列(一):注意力机制概述
2️⃣注意力机制详解系列(二):通道注意力机制
3️⃣注意力机制详解系列(三):空间注意力机制
4️⃣注意力机制详解系列(四):混合注意力机制
5️⃣注意力机制详解系列(五):分支与时间注意力机制

📝导读:本篇为注意力机制系列第五篇,主要介绍注意力机制中的分支与时间注意力机制,对分支与时间注意力机制方法进行详细讲解,会对重点论文会进行标注 * ,并配上论文地址和对应代码。

Branch注意力机制

在这里插入图片描述

branch注意力机制主要是关注哪个图片的意思,如一个branch中对不同图片以不同的权重,如CondConv,Dynamic Conv 等;或者在多个branch中,对不同的branch不同的权重,如Highway Network,SKNet, ResNeSt等。

Highway Network

论文:https://arxiv.org/abs/1507.06228

github: https://github.com/jzilly/RecurrentHighwayNetworks

Highway Network基于门机制引入了transform gate T 和carry gate C ,输出output是由tranform input和carry input组成,和resnet的思想有点相似。

img

SKNet

论文:https://arxiv.org/pdf/1903.06586.pdf

github: https://github.com/implus/SKNet

SKNet 对不同输入使用的卷积核感受野不同,参数权重也不同,可以自适应的对输出进行处理,与SENet有相同的地位:

img

sknet模块主要由 Split、Fuse、Select 三部分组成。

这里的Split是指对输入特征进行不同卷积核大小的完整卷积操作(包括efficient grouped/depthwise convolutions,Batch Normalization,ReLU function)。如结构图所示,对特征图进行Kernel3×3和Kernel5×5的卷积操作,得到两个输出,这里为了进一步减少计算量,会将5x5的卷积由两个3x3的卷积实现。在得到两个特征图后,第二步为Fuse部分,和SE模块相似,先将两个特征图逐像素相加后,使用全局平均池化(GAP),压缩成11c的特征图后,先降维再升维经过两次全连接,输出两个矩阵a和b,a和b各位置逐值相加和为1,即a=1-b。第三步为select部分,区别SENet,这里使用a和b的权重矩阵分别对第一步输出的两个特征图加权,最后求和得到最后的输出。

SKNet也是可直接嵌入网络的轻量级模块,SKNet使用时涉及到了卷积核数量和大小的选择问题。直观来说SKNet相当于给网络融入了soft attention机制,使网络可以获取不同感受野的信息,这或许可以成为一种泛化能力更好的网络结构。至于为何将SKNet放在branch attention 下面,可能是因为在第一步时使用了分组卷积吧。

ResNeSt

论文:https://hangzhang.org/files/resnest.pdf

github: https://github.com/zhanghang1989/ResNeSt

ResNeSt是基于SENet,SKNet和ResNext ,把attention 做到group level。

img

CondConv

论文:https://arxiv.org/abs/1904.04971

github: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv

作者提出一种条件参数卷积,它可以为每个样例学习一个特定的卷积核参数,通过替换标准卷积,CondConv可以提升模型的尺寸与容量,同时保持高效推理。

img

CondConv提出的方法与**混合专家方法(Mixture of Experts)**类似,需要在执行卷积计算之前通过多个专家对输入样本计算加权卷积核。主要需要计算几个较为昂贵的依赖样本的routing函数,Routing函数对应的模块与注意力模块类似,包括平均池化,全连接层和Sigmoid激活层。关键的是,每个卷积核只需计算一次并作用于不同位置即可。这意味着:通过提升专家数据量可达到提升网络容量的目的,而代码仅仅是很小的推理耗时:每个额外参数仅需一次乘加。如上图所示。

Dynamic Conv

论文:https://arxiv.org/pdf/1912.03458.pdf

github: https://github.com/kaijieshi7/Dynamic-convolution-Pytorch

文章提出的动态卷积能够根据输入,动态地集成多个并行的卷据核为一个动态核,可以提升模型表达能力而无需提升网络深度与宽度。通过简单替换成动态卷积。

img

动态卷积有K个kernel,共享相同的kernel size和输入输出维度,通过attention weight结合起来,与SENet对卷积的通道加权不同,动态卷积对卷积核加权。

时域注意力机制

时域注意力机制在cv领域主要考虑有时序信息的领域,如视频领域中的动作识别方向,其注意力机制主要是在时序列中,关注某一时序即某一帧的信息。

在这里插入图片描述

TAM

paper: https://arxiv.org/abs/2005.06803v1

github: https://github.com/liu-zhy/temporal-adaptive-module

由于存在拍摄视角变化和摄像机运动等多个因素,视频数据通常表现出较为复杂的时序动态特性,不同视频在时序维度上呈出不同的运动模式。为了解决这个问题,时序自适应模块(TAM)为每个视频生成特定的时序建模核。该算法针对不同视频片段,灵活高效地生成动态时序核,自适应地进行时序信息聚合。整体结构入下图所示:

img

TAM将时序自适应核的学习过程分解为局部分支和全局分支。全局分支( G )基于全局时序信息生成视频自适应的动态卷积核以聚合时序信息,这种方式的特点是对时序位置不敏感,忽略了局部间的差异性。而局部分支(L )使用带有局部时序视野的 1D 卷积学习视频的局部结构信息,生成对时序位置敏感的重要性权重,以弥补全局分支存在的不足。

GLTR

paper: https://arxiv.org/abs/1908.10049

github: https://github.com/ljn114514/GLTR

这是一篇用于行人ReID领域的一篇论文,作者提出在短期建模,基于当前帧的相邻几帧,能加强当前帧人物在该时间段的外观和运动情况,当任务发生遮挡时,则需要使用长期建模,增加时间跨度。所以论文在融合帧的特征时,短期建模和长期建模一起用上:

img

在短期建模时,使用了空洞卷积,增加感受野,在这里则是增加对当前帧的相邻几帧一起进行卷积处理,也就是综合相邻几帧的信息来增强当前帧的信息。在长期建模中,则使用的是transformer中的self-attention 机制。transformer的attention计算是通过所有信息与当前信息的关系计算的,也就是相当于基于当前帧与全部帧的关系,将全部帧的信息选择性的给予到当前帧,是一个长期建模的过程。也是变相的将注意力机制用在建模中。

分支注意力机制论文总结

  • Training very deep networks (NeurIPS 2015) pdf 🔥
  • Selective kernel networks (CVPR 2019) pdf 🔥
  • CondConv: Conditionally Parameterized Convolutions for Efficient Inference (NeurIPS 2019) pdf
  • Dynamic convolution: Attention over convolution kernels (CVPR 2020) pdf
  • ResNest: Split-attention networks (arXiv 2020) pdf 🔥

时间注意力机制论文总结

  • Jointly attentive spatial-temporal pooling networks for video-based person re-identification (ICCV 2017) pdf 🔥
  • Video person reidentification with competitive snippet-similarity aggregation and co-attentive snippet embedding (CVPR 2018) pdf
  • Scan: Self-and-collaborative attention network for video person re-identification (TIP 2019) [pdf](

相关文章:

注意力机制详解系列(五):分支与时间注意力机制

👨‍💻作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享,公众号:GoAI的学习小屋,免费分享书籍、简历、导图等资料&…...

创宇盾重保经验分享,看政府、央企如何防护?

三月重保已经迫近,留给我们的准备时间越来越少,综合近两年三月重保经验及数据总结,知道创宇用实际案例的防护效果说话,深入解析为何创宇盾可以在历次重保中保持“零事故”成绩,受到众多部委、政府、央企/国企客户的青睐…...

软件测试面试汇总

在浏览器中输入 URL,回车后发生了什么? 在浏览器中输入URL并按下回车键后,大致流程如下: 1、浏览器解析 URL,提取出协议(例如HTTP、HTTPS)、主机名和路径等信息。 2、浏览器查找该URL的缓存记录&#xff0…...

空指针,野指针

空指针在C/C中,空指针(null pointer)是指向内存地址0的指针变量。NULL在C/C中的定义为:#ifndef NULL#ifdef __cplusplus#define NULL 0#else#define NULL ((void *)0)#endif #endif从上面的代码定义中,我们可以发现在C…...

Mysql Nested-Loop Join算法和MRR

MySQL8之前仅支持一种join 算法—— nested loop,在 MySQL8 中推出了一种新的算法 hash join,比 nested loop 更加高效。(后面有时间介绍这种join算法) 1、mysql驱动表与被驱动表及join优化 先了解在join连接时哪个表是驱动表&a…...

Spark 广播/累加

Spark 广播/累加广播变量普通变量广播分布式数据集广播克制 Shuffle强制广播配置项Join Hintsbroadcast累加器Spark 提供了两类共享变量:广播变量(Broadcast variables)/累加器(Accumulators) 广播变量 创建广播变量…...

飞天云动,站在下一个商业时代的门口

ChatGPT的爆火让AIGC再度成为热词,随之而来的是对其商业化的畅想——不是ChatGPT自身如何盈利,而是它乃至整个AIGC能给现在的商业环境带来多大改变。 这不由得令人想起另一个同样旨在改变世界的概念,元宇宙。不同的是,元宇宙更侧…...

上海分时电价机制调整对储能项目的影响分析

安科瑞 耿敏花 2022年12月16日,上海市发改委发布《关于进一步完善我市分时电价机制有关事项的通知》(沪发改价管〔2022〕50号)。通知明确上海分时电价机制,一般工商业及其他两部制、大工业两部制用电夏季(7、8、9月)和冬季&#x…...

产品新人如何快速上手工作

三百六十行,行行出产品经理:上至封神的乔布斯,下至卖鸡蛋罐饼的阿姨,他们对如何打造自己的产品都会有一套完整的产品思路,这也是为什么说“人人都是产品经理”。这个看似光鲜的“经理”有时也会被戏称产品汪&#xff0…...

Linux: ARM GIC仅中断CPU 0问题分析

文章目录1. 前言2. 分析背景3. 问题4. 分析4.1 ARM GIC 中断芯片简介4.1.1 中断类型和分布4.1.2 拓扑结构4.2 问题根因4.2.1 设置GIC SPI中断的CPU亲和性4.2.2 GIC初始化:缺省的CPU亲和性4.2.2.1 boot CPU亲和性初始化流程4.2.2.1 其它非 boot CPU亲和性初始化流程5…...

第20篇:Java运算符全面总结(系列二)

目录 4、逻辑运算符 4.1 逻辑运算符 4.2 代码示例 5、赋值运算符 5.1 赋值运算符...

OpenCV4.x图像处理实例-OpenCV两小时快速入门(基于Python)

OpenCV两小时快速入门(基于Python) 文章目录 OpenCV两小时快速入门(基于Python)1、OpenCV环境安装2、图像读取与显示3、图像像素访问、操作与ROI4、图像缩放5、几何变换5.1 平移5.2 旋转6、基本绘图6.1 绘制直线6.2 绘制圆6.3 绘制矩形6.4 绘制文本7、剪裁图像8、图像平滑与…...

【Git】Mac忽略.DS_Store文件

我们在github上经常看到某些仓库里面包含了.DS_Store文件,或者某些sdk的压缩包里面可以看到,这都是由于随着git的提交把这类文件也提交到仓库,压缩也是一样,压缩这个先留着后面处理。 Mac上的.DS_Store文件 .DS_Store 文件&#…...

12.2 基于Django的服务器信息查看应用(CPU信息)

文章目录CPU信息展示图表展示-视图函数设计图表展示-前端界面设计折线图和饼图展示饼图测试折线图celery和Django配合实现定时任务Windows安装redis根据数据库中的数据绘制CPU折线图CPU信息展示 图表展示-视图函数设计 host/views.py def cpu(request):logical_core_num ps…...

【软件测试】接口测试总结

本文主要分为两个部分: 第一部分:主要从问题出发,引入接口测试的相关内容并与前端测试进行简单对比,总结两者之前的区别与联系。但该部分只交代了怎么做和如何做?并没有解释为什么要做? 第二部分&#xff1…...

代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组

代码随想录算法训练营第52天 || 300.最长递增子序列 || 674. 最长连续递增序列 || 718. 最长重复子数组 300.最长递增子序列 题目介绍 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或…...

gitblit 安装使用

1 安装服务端 简而言之:需要安装 java,gitblit, git 三个软件 Windows 10环境使用Gitblit搭建局域网Git服务器 前言 安装Java并配置环境安装gitblit并配置启动gitblit为windows服务使用gitblit创建repository并管理用户 1.1 安装Java并配…...

使用 TensorFlow、Keras-OCR 和 OpenCV 从技术图纸中获取信息

简单介绍输入是技术绘图图像。对象检测模型获取图像后对其进行分类,找到边界框,分配维度,计算属性。示例图像(输入)分类后,找到“IPN”部分。之后,它计算属性,例如惯性矩。它适用于不…...

ESP32设备驱动-GUVA-S12SD紫外线检测传感器驱动

GUVA-S12SD紫外线检测传感器驱动 文章目录 GUVA-S12SD紫外线检测传感器驱动1、GUVA-S12SD介绍2、硬件准备3、软件准备4、驱动实现1、GUVA-S12SD介绍 GUVA-S12SD 紫外线传感器芯片适用于检测太阳光中的紫外线辐射。 它可用于任何需要监控紫外线量的应用,并且可以简单地连接到任…...

WIN7下 program file 权限不足?咋整?!!

在WIN7下对Program Files目录的权限问题 [问题点数:40分,结帖人mysunck] 大部分人说要使用manifest,但是其中一个人说: “安装程序要求管理员很正常,你的程序可以在programfiles,但用户数据不能放那里,因…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

Selenium常用函数介绍

目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...