当前位置: 首页 > news >正文

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类

目录

前言

1 电能质量数据集制作与加载

1.1 导入数据

1.2 制作数据集

2 CNN-2D分类模型和训练、评估

2.1 定义CNN-2d分类模型

2.2 定义模型参数

2.3 模型结构

2.4 模型训练

2.5 模型评估

3 CNN-1D分类模型和训练、评估

3.1 定义CNN-1d分类模型

3.2 定义模型参数

3.3 模型结构

3.4 模型训练

3.5 模型评估

4 模型对比


往期精彩内容:

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

轴承故障诊断分类模型全家桶-最全教程-CSDN博客

前言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现CNN模型一维卷积和二维卷积对扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

部分扰动信号类型波形图如下所示:

1 电能质量数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

import pandas as pd
import numpy as np# 样本时长0.2s  样本步长1024  每个信号生成500个样本  噪声0DB  
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

from joblib import dump, load
# 生成数据
train_dataframe, val_dataframe, test_dataframe = make_data(dataframe_10c, split_rate)
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_dataframe)
val_xdata, val_ylabel = make_data_labels(val_dataframe)
test_xdata, test_ylabel = make_data_labels(test_dataframe)
# 保存数据
dump(train_xdata, 'TrainX_1024_0DB_10c')
dump(val_xdata, 'ValX_1024_0DB_10c')
dump(test_xdata, 'TestX_1024_0DB_10c')
dump(train_ylabel, 'TrainY_1024_0DB_10c')
dump(val_ylabel, 'ValY_1024_0DB_10c')
dump(test_ylabel, 'TestY_1024_0DB_10c')

2 CNN-2D分类模型和训练、评估

2.1 定义CNN-2d分类模型

2.2 定义模型参数

# 定义模型参数
batch_size = 32
# 先用浅层试一试
conv_arch = ((2, 32), (1, 64), (1, 128))  
input_channels = 1
num_classes = 10
model = CNN2DModel(conv_arch, num_classes, batch_size)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

2.3 模型结构

2.4 模型训练

训练结果

50个epoch,准确率将近97%,CNN-2D网络分类模型效果良好。

2.5 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载模型
model =torch.load('best_model_cnn2d.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():correct_test = 0test_loss = 0for test_data, test_label in test_loader:test_data, test_label = test_data.to(device), test_label.to(device)test_output = model(test_data)probabilities = F.softmax(test_output, dim=1)predicted_labels = torch.argmax(probabilities, dim=1)correct_test += (predicted_labels == test_label).sum().item()loss = loss_function(test_output, test_label)test_loss += loss.item()test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')Test Accuracy: 0.9313  Test Loss: 0.04866932

3 CNN-1D分类模型和训练、评估

3.1 定义CNN-1d分类模型

注意:与2d模型的信号长度堆叠不同,CNN-1D模型直接在一维序列上进行卷积池化操作;形状为(batch,H_in, seq_length),利用平均池化 使CNN-1D和CNN-2D模型最后输出维度相同,保持着相近的参数量。

3.2 定义模型参数

# 定义模型参数
batch_size = 32
# 先用浅层试一试
conv_arch = ((2, 32), (1, 64), (1, 128))  
input_channels = 1
num_classes = 10
model = CNN1DModel(conv_arch, num_classes, batch_size)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.3 模型结构

3.4 模型训练

训练结果

100个epoch,准确率将近95%,CNN-1D网络分类模型效果良好。

3.5 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载模型
model =torch.load('best_model_cnn1d.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():correct_test = 0test_loss = 0for test_data, test_label in test_loader:test_data, test_label = test_data.to(device), test_label.to(device)test_output = model(test_data)probabilities = F.softmax(test_output, dim=1)predicted_labels = torch.argmax(probabilities, dim=1)correct_test += (predicted_labels == test_label).sum().item()loss = loss_function(test_output, test_label)test_loss += loss.item()test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')Test Accuracy: 0.9185  Test Loss: 0.14493044

4 模型对比

对比CNN-2D模型 和CNN-1D模型:

模型参数量训练集准确率验证集准确率测试集准确率
CNN1D61565496.5694.6491.85
CNN2D68343098.3896.8893.13

由于CNN-2D模型参数量稍微多一点,所以模型表现得也略好一点,适当调整参数,两者模型准确率相近。但是CNN-2D推理速度要快于CNN-1D,在电能质量扰动信号数据集上,应该更考虑CNN-2D模型在堆叠后的一维信号上进行卷积池化。

注意调整参数:

  • 可以适当增加 CNN层数 和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

相关文章:

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类

目录 前言 1 电能质量数据集制作与加载 1.1 导入数据 1.2 制作数据集 2 CNN-2D分类模型和训练、评估 2.1 定义CNN-2d分类模型 2.2 定义模型参数 2.3 模型结构 2.4 模型训练 2.5 模型评估 3 CNN-1D分类模型和训练、评估 3.1 定义CNN-1d分类模型 3.2 定义模型参数 …...

如何解决报错:Another app is currently holding yum lock?

在运行yum 相关命令的时候,不知道怎么回事无法进行下载安装,报出 Another app is currently holding the yum lock; waiting for it to exit... 的错误提示。 Another app is currently holding the yum lock. 意思是另外一个应用正在锁住进程锁。 …...

electron使用electron-builder进行MacOS的 打包、签名、公证、上架、自动更新

一、前言 由于electron在macOS下的坑太多,本文不可能把所有的问题都列出来,也不可能把所有的解决方案贴出来;本文也不太会讲解每一个配置点为什么要这么设置的原因,因为有些点我也说不清,我尽可能会说明的。所以&…...

RAD Studio 12 安装激活说明及常见问题

目录 RAD Studio 安装说明 RAD Studio 最新的修补程序更新 RAD Studio 产品相关信息 Embarcadero 产品在线注册步骤 单机版授权产品注册注意事项 Embarcadero 产品离线注册步骤 Embarcadero 产品安装次数查询 Embarcadero 序号注册次数限制 EDN账号 - 查询授权序号、下…...

JavaScript实现视频共享

1.视频共享webrtc-master index.html <!DOCTYPE html> <html> <head><script typetext/javascript srchttps://cdn.scaledrone.com/scaledrone.min.js></script><meta charset"utf-8"><meta name"viewport" cont…...

uniapp框架——vue3+uniFilePicker+fastapi实现文件上传(搭建ai项目第二步)

文章目录 ⭐前言&#x1f496; 小程序系列文章 ⭐uni-file-picker 组件&#x1f496; 绑定事件&#x1f496; uploadFile api&#x1f496; 自定义上传 ⭐后端fastapi定义上传接口⭐uniapp开启本地请求代理devServer⭐前后端联调⭐总结⭐结束 ⭐前言 大家好&#xff0c;我是ym…...

一篇文章带你入门PHP魔术方法

PHP魔术方法 PHP 中的"魔术方法"是一组特殊的方法&#xff0c;它们在特定情况下自动被调用。这些方法的名称都是以两个下划线&#xff08;__&#xff09;开头。魔术方法提供了一种方式来执行各种高级编程技巧&#xff0c;使得对象的行为可以更加灵活和强大。以下是一…...

【数据库系统概论】第6章-关系数据库理论

真别看吧&#xff0c;抄ppt而已啊 文章目录 6.1 引言6.2 规范化6.2.1 函数依赖6.2.2 码6.2.3 范式&#xff08;Normal Form&#xff09;6.2.4 BC范式6.2.5 规范化小结 6.1 引言 我们有这样一张表&#xff1a; but 为啥这样设计呢&#xff1f;由此引出怎样设计一个关系数据库…...

算法设计与分析实验报告-贪心算法

校课程的简单实验报告。 算法设计与分析实验报告-递归与分治策略 算法设计与分析实验报告-动态规划算法 算法设计与分析实验报告-贪心算法 dijkstra迪杰斯特拉算法&#xff08;邻接表法&#xff09; 算法设计与分析实验报告-回溯法 算法设计与分析实验报告-分支限界法 …...

Unity读取服务器声音文件

Unity读取服务器声音文件 功能1.在网站的根目录放置一个声音文件Alarm01.wav&#xff08;这个是window系统自带的找不到这个格式的可以直接在C盘搜索&#xff09;2.在WebManager.cs脚本中添加clipPath、audio、m_downloadClip属性和DownloadSound&#xff08;&#xff09;函数&…...

掌握ElasticSearch(一):Elasticsearch安装与配置、Kibana安装

文章目录 〇、简介1.Elasticsearch简介2.典型业务场景3.数据采集工具4.名词解释 一、安装1.使用docker(1)创建虚拟网络(2)Elasticsearch安装步骤 2.使用压缩包 二、配置1.目录介绍2.配置文件介绍3.elasticsearch.yml节点配置4.jvm.options堆配置 二、可视化工具Kibana1.介绍2.安…...

《剑指offer》Java版--13.机器人的运动范围(BFS)

剑指offer原题13:机器人的运动范围 地上有一个m行n列的方格。一个机器人从坐标(0,0)的格子开始移动&#xff0c;它每次可以向左、右、上、下移动一格&#xff0c;但不能进入行坐标和列坐标的数位之和大于k的格子。例如&#xff0c;当k为18时,机器人能够进入方格(35,37),因为353…...

基于流程挖掘的保险理赔优化策略实践

引言 在当今日益竞争的商业环境中,保险公司面临着日益增长的业务量和客户期望的挑战。特别是在理赔领域,理赔是保险行业的重要环节,也是保险公司和客户之间最直接的联系点。然而,长周期和繁琐的理赔流程常常给保险公司和投保人带来困扰。因此,如何提供准确且高效的理赔处…...

Docker五 | DockerFile

目录 DockerFile 常用保留字 FROM MAINTAINER RUN EXPOSE WORKDIR USER ENV VOLUME ADD COPY CMD ENTRYPOINT DockerFile案例 前期准备 编写DockerFile文件 运行DockerFile 运行镜像 DockerFile是用来构建Docker镜像的文本文件&#xff0c;是由一条条构建…...

2023年度总结:技术旅程的杨帆远航⛵

文章目录 职业规划与心灵成长 ❤️‍&#x1f525;我的最大收获与成长 &#x1f4aa;新年Flag &#x1f6a9;我的技术发展规划 ⌛对技术行业的深度思考 &#x1f914;祝愿 &#x1f307; 2023 年对我来说是一个充实而令人难以忘怀的一年。这一年&#xff0c;我在CSDN上发表了 1…...

SpringBoot+AOP+Redis 防止重复请求提交

本文项目基于以下教程的代码版本&#xff1a; https://javaxbfs.blog.csdn.net/article/details/135224261 代码仓库: springboot一些案例的整合_1: springboot一些案例的整合 1、实现步骤 2.引入依赖 我们需要redis、aop的依赖。 <dependency><groupId>org.spr…...

偷流量、端口占用、网络负载高、socket创建释放异常等Android高阶TCP/IP网络问题定位思路

一&#xff0c;背景 通常一些偷流量、端口占用、网络负载高、socket创建释放异常等Android网络相关问题&#xff0c;可以通过使用tcpdump抓tcp/ip报文&#xff0c;来定位。但是tcpdump无进程信息&#xff0c;也没有APK包名信息&#xff0c;无法确认异常的报文来自哪些Apk或者n…...

《人人都能用英语》学习笔记

https://github.com/xiaolai/everyone-can-use-english 核心&#xff1a; 用 What──它究竟是什么&#xff1f;Why──为什么它是那个样子&#xff1f;How──要掌握它、应用它&#xff0c;必须得遵循什么样的步骤&#xff1f; 在运行程序之前&#xff0c;要反复浏览代码&a…...

NFC与ZigBee技术在智慧农业物联网监测系统中的应用

近年来&#xff0c;我国农业物联网技术飞速发展&#xff0c;基于物联网技术的智能农业监测系统有望得到较大规模的推广应用。但传统的物联网农业监测系统其网络结构层次单一&#xff0c;多采用基于有线或无线结构的节点-上位机数据采集模式&#xff0c;节点数据访问模式缺乏灵活…...

k8s-cni网络 10

Flannel vxlan模式跨主机通信原理 在同一个节点上的pod 流量通过cni网桥可以直接进行转发&#xff1b; 在需要跨主机访问时&#xff0c;数据包通过flannel(隧道) 知道另一边的mac地址&#xff0c;就可以拿到另一边的ip地址&#xff0c;然后构建常规的以太网数据包&#xff0c;…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...