当前位置: 首页 > news >正文

基于llama-index对embedding模型进行微调

QA对话目前是大语言模型的一大应用场景,在QA对话中,由于大语言模型信息的滞后性以及不包含业务知识的特点,我们经常需要外挂知识库来协助大模型解决一些问题。在外挂知识库的过程中,embedding模型的召回效果直接影响到大模型的回答效果,因此,在许多场景下,我们都需要微调我们的embedding模型来提高我们的召回效果。下面,我们就基于llama-index对BAAI/bge-base-zh-v1.5模型进行微调,关于该模型的介绍,可以参考https://huggingface.co/BAAI/bge-base-zh-v1.5。

平台介绍

对embedding模型进行微调的过程中需要使用GPU加速训练,由于家境贫寒,我这里就使用了Google colab提供的免费T4GPU进行微调测试。如果大家没办法使用这个,可以使用国内一些公司的GPU云平台,租便宜的GPU就行,微调这个模型所耗费的GPU资源不多。以下所有训练代码皆是在Jupter-notebook上编写并执行的。

依赖安装

安装一些依赖库,有些依赖需要制定版本,否则存在不兼容的问题。

!pip install langchain==0.0.300 llmx==0.0.15a0 openai==0.28.1 llama_index==0.8.23.post1 pypdf sentence-transformers

训练样本准备

我们当前的使用场景是QA问答场景,因此训练数据的格式最好也是问答的格式。我这里由于没有现成的问答样本(人工整理比较耗时),因此我就摘取了《明朝那些事儿》这个小说里面的部分章节,然后让GPT-3.5针对文章内容进行提问,从而形成问答对。代码如下

import json
import openai
import osfrom llama_index import SimpleDirectoryReader
from llama_index.node_parser import SimpleNodeParser
from llama_index.schema import MetadataMode
from llama_index import (VectorStoreIndex,SimpleDirectoryReader,ServiceContext,Response
)def load_corpus(docs, for_training=False, verbose=False):parser = SimpleNodeParser.from_defaults()if for_training:nodes = parser.get_nodes_from_documents(docs[:5], show_progress=verbose)else:nodes = parser.get_nodes_from_documents(docs[6:], show_progress=verbose)if verbose:print(f'Parsed {len(nodes)} nodes')return nodesSEC_FILE = ['embedding_test.txt'] # embedding_test.txt是我训练样本的文件名,即我摘取了部分小说章节并直接保存为了txt文件。print(f"Loading files {SEC_FILE}")reader = SimpleDirectoryReader(input_files=SEC_FILE)
docs = reader.load_data()
print(f'Loaded {len(docs)} docs')docs_nodes = load_corpus(docs, for_training=True, verbose=True)len(docs_nodes)train_nodes = docs_nodes[:75]  # 人工选择3分之2作为训练集
print(f'Loaded {len(train_nodes)} train docs')
val_nodes = docs_nodes[76:] # 剩下三分之一作为验证集
print(f'Loaded {len(val_nodes)} val docs')

构造训练集和测试集

使用GPT3.5基于小说内容生成对应的问题,最后生成train_dataset.json作为训练集,val_dataset.json作为验证集。

from llama_index.finetuning import (generate_qa_embedding_pairs,EmbeddingQAFinetuneDataset,
)
from llama_index.llms import OpenAIos.environ["OPENAI_API_KEY"] = "sk-************"
openai.api_key = os.environ["OPENAI_API_KEY"]
openai.api_base = "https://************"prompt="""下方是上下文信息。---------------------
{context_str}
---------------------根据提供的上下文信息和没有先验知识的原则,仅基于以下查询生成问题。你是一名教师/教授。你的任务是为即将到来的测验/考试设置{num_questions_per_chunk}个问题。这些问题应在文档中多样化,且仅限于所提供的上下文信息。
"""train_dataset = generate_qa_embedding_pairs(train_nodes, qa_generate_prompt_tmpl=prompt)
val_dataset = generate_qa_embedding_pairs(val_nodes, qa_generate_prompt_tmpl=prompt)train_dataset.save_json("train_dataset.json")
val_dataset.save_json("val_dataset.json")

微调Embedding模型

这里的微调都是使用的默认参数,在实际微调过程中,可根据实际情况进行调整。

from llama_index.finetuning import SentenceTransformersFinetuneEngine
train_dataset = EmbeddingQAFinetuneDataset.from_json("train_dataset.json")
val_dataset = EmbeddingQAFinetuneDataset.from_json("val_dataset.json")
finetune_engine = SentenceTransformersFinetuneEngine(train_dataset,model_id="BAAI/bge-base-zh-v1.5",model_output_path="test_model",val_dataset=val_dataset,
)
finetune_engine.finetune() #由于模型较小,且训练样本较少,微调过程非常快
embed_model = finetune_engine.get_finetuned_model()
embed_model

评估微调后的模型

在评估阶段,我们对比了微调前、后的BAAI/bge-base-zh-v1.5模型以及OPENAI的ada002的Embedding模型的召回效果,代码如下:

from llama_index.embeddings import OpenAIEmbedding
from llama_index import ServiceContext, VectorStoreIndex
from llama_index.schema import TextNode
from tqdm.notebook import tqdm
import pandas as pd
def evaluate(dataset,embed_model,top_k=5,verbose=False,
):corpus = dataset.corpusqueries = dataset.queriesrelevant_docs = dataset.relevant_docsservice_context = ServiceContext.from_defaults(embed_model=embed_model)nodes = [TextNode(id_=id_, text=text) for id_, text in corpus.items()]index = VectorStoreIndex(nodes, service_context=service_context, show_progress=True)retriever = index.as_retriever(similarity_top_k=top_k)eval_results = []for query_id, query in tqdm(queries.items()):retrieved_nodes = retriever.retrieve(query)retrieved_ids = [node.node.node_id for node in retrieved_nodes]expected_id = relevant_docs[query_id][0]is_hit = expected_id in retrieved_ids  # assume 1 relevant doceval_result = {"is_hit": is_hit,"retrieved": retrieved_ids,"expected": expected_id,"query": query_id,}eval_results.append(eval_result)return eval_results

注意,在执行下面的代码前,需要先在当前项目的目录下创建results文件夹,否则会导致程序执行失败。

from sentence_transformers.evaluation import InformationRetrievalEvaluator
from sentence_transformers import SentenceTransformerdef evaluate_st(dataset,model_id,name,
):corpus = dataset.corpusqueries = dataset.queriesrelevant_docs = dataset.relevant_docsevaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs, name=name)model = SentenceTransformer(model_id)return evaluator(model, output_path="results/")

OPENAI-ada002

ada = OpenAIEmbedding()
ada_val_results = evaluate(val_dataset, ada)
df_ada = pd.DataFrame(ada_val_results)
hit_rate_ada = df_ada['is_hit'].mean()
hit_rate_ada

ada002模型的最终评测结果为0.9285714285714286

原始BAAI/bge-base-zh-v1.5

bge = "local:BAAI/bge-base-zh-v1.5"
bge_val_results = evaluate(val_dataset, bge)
df_bge = pd.DataFrame(bge_val_results)
hit_rate_bge = df_bge['is_hit'].mean()
hit_rate_bge

原始的bge-base-zh-v1.5模型的评测结果为0.7663744588744589

微调后的BAAI/bge-base-zh-v1.5

finetuned = "local:test_model"
val_results_finetuned = evaluate(val_dataset, finetuned)
df_finetuned = pd.DataFrame(val_results_finetuned)
hit_rate_finetuned = df_finetuned['is_hit'].mean()
hit_rate_finetuned

微调后模型的最终评测结果为0.975。即微调后,我们的embedding模型在当前数据集的召回效果由0.766上升到0.975注意,得分并不是越高越好,需考虑是否过拟合,可以在其他数据集上再评测下。

以上,即是一次简单的微调过程。感谢技术的发展和开源大佬们的贡献,使得人工智能的应用门槛越来越低。

参考资料

  1. https://colab.research.google.com/github/wenqiglantz/nvidia-sec-finetuning/blob/main/embedding-finetuning/finetune_embedding_nvidia_sec.ipynb

相关文章:

基于llama-index对embedding模型进行微调

QA对话目前是大语言模型的一大应用场景,在QA对话中,由于大语言模型信息的滞后性以及不包含业务知识的特点,我们经常需要外挂知识库来协助大模型解决一些问题。在外挂知识库的过程中,embedding模型的召回效果直接影响到大模型的回答…...

如何本地搭建FastDFS文件服务器并实现远程访问【内网穿透】

文章目录 前言1. 本地搭建FastDFS文件系统1.1 环境安装1.2 安装libfastcommon1.3 安装FastDFS1.4 配置Tracker1.5 配置Storage1.6 测试上传下载1.7 与Nginx整合1.8 安装Nginx1.9 配置Nginx 2. 局域网测试访问FastDFS3. 安装cpolar内网穿透4. 配置公网访问地址5. 固定公网地址5.…...

spring基于Xml管理bean---Ioc依赖注入:对象类型属性赋值(2)----内部bean的引入(bean和bean之间的引入)、(3)级联方式注入

bean创建对象类型赋值方式 第一&#xff1a;外部bean的引入 第二&#xff1a;内部bean的引入 第三&#xff1a;级联属性赋值 文章目录 bean创建对象类型赋值方式对象类型内部bean赋值代码分析总结 对象类型属性级联方式的赋值扩展知识 对象类型内部bean赋值 代码分析 <b…...

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类

目录 前言 1 电能质量数据集制作与加载 1.1 导入数据 1.2 制作数据集 2 CNN-2D分类模型和训练、评估 2.1 定义CNN-2d分类模型 2.2 定义模型参数 2.3 模型结构 2.4 模型训练 2.5 模型评估 3 CNN-1D分类模型和训练、评估 3.1 定义CNN-1d分类模型 3.2 定义模型参数 …...

如何解决报错:Another app is currently holding yum lock?

在运行yum 相关命令的时候&#xff0c;不知道怎么回事无法进行下载安装&#xff0c;报出 Another app is currently holding the yum lock; waiting for it to exit... 的错误提示。 Another app is currently holding the yum lock. 意思是另外一个应用正在锁住进程锁。 …...

electron使用electron-builder进行MacOS的 打包、签名、公证、上架、自动更新

一、前言 由于electron在macOS下的坑太多&#xff0c;本文不可能把所有的问题都列出来&#xff0c;也不可能把所有的解决方案贴出来&#xff1b;本文也不太会讲解每一个配置点为什么要这么设置的原因&#xff0c;因为有些点我也说不清&#xff0c;我尽可能会说明的。所以&…...

RAD Studio 12 安装激活说明及常见问题

目录 RAD Studio 安装说明 RAD Studio 最新的修补程序更新 RAD Studio 产品相关信息 Embarcadero 产品在线注册步骤 单机版授权产品注册注意事项 Embarcadero 产品离线注册步骤 Embarcadero 产品安装次数查询 Embarcadero 序号注册次数限制 EDN账号 - 查询授权序号、下…...

JavaScript实现视频共享

1.视频共享webrtc-master index.html <!DOCTYPE html> <html> <head><script typetext/javascript srchttps://cdn.scaledrone.com/scaledrone.min.js></script><meta charset"utf-8"><meta name"viewport" cont…...

uniapp框架——vue3+uniFilePicker+fastapi实现文件上传(搭建ai项目第二步)

文章目录 ⭐前言&#x1f496; 小程序系列文章 ⭐uni-file-picker 组件&#x1f496; 绑定事件&#x1f496; uploadFile api&#x1f496; 自定义上传 ⭐后端fastapi定义上传接口⭐uniapp开启本地请求代理devServer⭐前后端联调⭐总结⭐结束 ⭐前言 大家好&#xff0c;我是ym…...

一篇文章带你入门PHP魔术方法

PHP魔术方法 PHP 中的"魔术方法"是一组特殊的方法&#xff0c;它们在特定情况下自动被调用。这些方法的名称都是以两个下划线&#xff08;__&#xff09;开头。魔术方法提供了一种方式来执行各种高级编程技巧&#xff0c;使得对象的行为可以更加灵活和强大。以下是一…...

【数据库系统概论】第6章-关系数据库理论

真别看吧&#xff0c;抄ppt而已啊 文章目录 6.1 引言6.2 规范化6.2.1 函数依赖6.2.2 码6.2.3 范式&#xff08;Normal Form&#xff09;6.2.4 BC范式6.2.5 规范化小结 6.1 引言 我们有这样一张表&#xff1a; but 为啥这样设计呢&#xff1f;由此引出怎样设计一个关系数据库…...

算法设计与分析实验报告-贪心算法

校课程的简单实验报告。 算法设计与分析实验报告-递归与分治策略 算法设计与分析实验报告-动态规划算法 算法设计与分析实验报告-贪心算法 dijkstra迪杰斯特拉算法&#xff08;邻接表法&#xff09; 算法设计与分析实验报告-回溯法 算法设计与分析实验报告-分支限界法 …...

Unity读取服务器声音文件

Unity读取服务器声音文件 功能1.在网站的根目录放置一个声音文件Alarm01.wav&#xff08;这个是window系统自带的找不到这个格式的可以直接在C盘搜索&#xff09;2.在WebManager.cs脚本中添加clipPath、audio、m_downloadClip属性和DownloadSound&#xff08;&#xff09;函数&…...

掌握ElasticSearch(一):Elasticsearch安装与配置、Kibana安装

文章目录 〇、简介1.Elasticsearch简介2.典型业务场景3.数据采集工具4.名词解释 一、安装1.使用docker(1)创建虚拟网络(2)Elasticsearch安装步骤 2.使用压缩包 二、配置1.目录介绍2.配置文件介绍3.elasticsearch.yml节点配置4.jvm.options堆配置 二、可视化工具Kibana1.介绍2.安…...

《剑指offer》Java版--13.机器人的运动范围(BFS)

剑指offer原题13:机器人的运动范围 地上有一个m行n列的方格。一个机器人从坐标(0,0)的格子开始移动&#xff0c;它每次可以向左、右、上、下移动一格&#xff0c;但不能进入行坐标和列坐标的数位之和大于k的格子。例如&#xff0c;当k为18时,机器人能够进入方格(35,37),因为353…...

基于流程挖掘的保险理赔优化策略实践

引言 在当今日益竞争的商业环境中,保险公司面临着日益增长的业务量和客户期望的挑战。特别是在理赔领域,理赔是保险行业的重要环节,也是保险公司和客户之间最直接的联系点。然而,长周期和繁琐的理赔流程常常给保险公司和投保人带来困扰。因此,如何提供准确且高效的理赔处…...

Docker五 | DockerFile

目录 DockerFile 常用保留字 FROM MAINTAINER RUN EXPOSE WORKDIR USER ENV VOLUME ADD COPY CMD ENTRYPOINT DockerFile案例 前期准备 编写DockerFile文件 运行DockerFile 运行镜像 DockerFile是用来构建Docker镜像的文本文件&#xff0c;是由一条条构建…...

2023年度总结:技术旅程的杨帆远航⛵

文章目录 职业规划与心灵成长 ❤️‍&#x1f525;我的最大收获与成长 &#x1f4aa;新年Flag &#x1f6a9;我的技术发展规划 ⌛对技术行业的深度思考 &#x1f914;祝愿 &#x1f307; 2023 年对我来说是一个充实而令人难以忘怀的一年。这一年&#xff0c;我在CSDN上发表了 1…...

SpringBoot+AOP+Redis 防止重复请求提交

本文项目基于以下教程的代码版本&#xff1a; https://javaxbfs.blog.csdn.net/article/details/135224261 代码仓库: springboot一些案例的整合_1: springboot一些案例的整合 1、实现步骤 2.引入依赖 我们需要redis、aop的依赖。 <dependency><groupId>org.spr…...

偷流量、端口占用、网络负载高、socket创建释放异常等Android高阶TCP/IP网络问题定位思路

一&#xff0c;背景 通常一些偷流量、端口占用、网络负载高、socket创建释放异常等Android网络相关问题&#xff0c;可以通过使用tcpdump抓tcp/ip报文&#xff0c;来定位。但是tcpdump无进程信息&#xff0c;也没有APK包名信息&#xff0c;无法确认异常的报文来自哪些Apk或者n…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...