对采集到的温湿度数据,使用python进行数据清洗,并使用预测模型进行预测未来一段时间的温湿度数据。
使用Python对传感器采集到的数据进行数据清洗和预测未来一段时间的温湿度数据,您可以按照以下步骤进行操作:
- 导入必要的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
- 读取数据
data = pd.read_csv('data.csv') # 替换为您的数据文件路径
- 数据清洗
# 处理缺失值或异常值
data = data.dropna() # 删除包含缺失值的行
data = data[(data['Temperature'] > -50) & (data['Temperature'] < 100)] # 温度异常值范围
data = data[(data['Humidity'] >= 0) & (data['Humidity'] <= 100)] # 湿度异常值范围# 处理重复值
data = data.drop_duplicates()# 处理时间列
data['Timestamp'] = pd.to_datetime(data['Timestamp'])
data = data.set_index('Timestamp')
- 特征工程
# 提取日期和时间特征
data['Year'] = data.index.year
data['Month'] = data.index.month
data['Day'] = data.index.day
data['Hour'] = data.index.hour
data['Minute'] = data.index.minute
- 划分训练集和测试集
X = data[['Year', 'Month', 'Day', 'Hour', 'Minute']]
y_temperature = data['Temperature']
y_humidity = data['Humidity']X_train, X_test, y_temperature_train, y_temperature_test = train_test_split(X, y_temperature, test_size=0.2, random_state=42)
X_train, X_test, y_humidity_train, y_humidity_test = train_test_split(X, y_humidity, test_size=0.2, random_state=42)
- 构建模型并训练
# 温度预测模型
temperature_model = LinearRegression()
temperature_model.fit(X_train, y_temperature_train)# 湿度预测模型
humidity_model = LinearRegression()
humidity_model.fit(X_train, y_humidity_train)
- 预测未来一段时间的温湿度数据
# 构造待预测的时间特征
future_time = pd.date_range(start=data.index[-1], periods=10, freq='H')
future_data = pd.DataFrame({'Year': future_time.year,'Month': future_time.month,'Day': future_time.day,'Hour': future_time.hour,'Minute': future_time.minute})# 预测温度
future_temperature = temperature_model.predict(future_data)# 预测湿度
future_humidity = humidity_model.predict(future_data)
- 打印预测结果
for i in range(len(future_time)):print('Time: {}, Predicted Temperature: {:.2f}°C, Predicted Humidity: {:.2f}%'.format(future_time[i], future_temperature[i], future_humidity[i]))
这是一个简单的示例,仅供参考,如需指导,可私聊,适当收费
相关文章:
对采集到的温湿度数据,使用python进行数据清洗,并使用预测模型进行预测未来一段时间的温湿度数据。
使用Python对传感器采集到的数据进行数据清洗和预测未来一段时间的温湿度数据,您可以按照以下步骤进行操作: 导入必要的库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model …...
嵌入式SOC之通用图像处理之OSD文字信息叠加的相关实践记录
机缘巧合 机缘巧合下, 在爱芯元智的xx开发板下进行sdk的开发.由于开发板目前我拿到是当前最新的一版(估计是样品),暂不公开开发板具体型号信息.以下简称板子 .很多优秀的芯片厂商,都会提供与开发板配套的完善的软件以及完善的技术支持(FAE),突然觉得爱芯…...
Java日期工具类LocalDateTime
Java日期工具类LocalDateTime 嘚吧嘚LocalDateTime - API创建时间获取年月日时分秒增加时间减少时间替换时间日期比较 嘚吧嘚 压轴的来了,个人感觉LocalDateTime是使用频率最高的工具类,所以本篇像文章详细研究说明一下🧐。 如果看了Java日期…...
从C到C++1
一.思想过渡 前言:明确地说,学了C语言就相当于学了 C 的一半,从C语言转向 C 时,不需要再从头开始,接着C语言往下学就可以,所以我强烈建议先学C语言再学 C。 1.面向过程与面向对象 从“学院派”的角度来…...
[Angular] 笔记 18:Angular Router
Angular Router 视频 chatgpt: Angular 具有内置的大量工具、功能和库,功能强大且经过良好设计,如组件化架构、依赖注入、模块化系统、路由和HTTP客户端等。这些功能可以直接用于项目中,无需额外的设置或第三方库。这简化了开发流…...
微服务全链路灰度方案介绍
目录 一、单体架构下的服务发布 1.1 蓝绿发布 二、微服务架构下的服务发布 三、微服务场景下服务发布的问题 四、全链路灰度解决方案 4.1 物理环境隔离 4.2 逻辑环境隔离 4.3 全链路灰度方案实现技术 4.3.1 标签路由 4.3.2 节点打标 4.3.3 流量染色 4.3.4 分布式链路…...
低代码开发OA系统 低代码平台如何搭建OA办公系统
随着企业业务的复杂化和信息化的推进,如何快速、高效地构建一个适应企业发展需求的OA系统成为许多企业关注的焦点。本文将介绍低代码开发在构建OA系统方面的优势,并以白码低代码平台为例,探讨其在实际应用中的价值和功能。 什么是低代码开发?…...
构建Python的Windows整合包教程
构建Python的Windows整合包教程 原文链接:https://blog.gcc.ac.cn/post/2023/buildpythonwindowsintegrationpackagetutorial/ 构建Python的Windows整合包教程 - 我的博客原文链接 前言 之前的开源项目本地素材搜索有很多人想要Windows整合包,因为Wi…...
《整机柜服务器通用规范》由OCTC正式发布!浪潮信息牵头编制
近日,中国电子工业标准化技术协会开放计算标准工作委员会(OCTC)正式批准发布了《整机柜服务器通用规范》,该标准由浪潮信息牵头,中国工商银行、中国质量认证中心、英特尔、中国计量科学研究院等十余家单位联合编制&…...
Linux:修改和删除已有变量
变量修改 变量的修改有以下几种方式: 变量设置方式说明${变量名#匹配字串}从头向后开始匹配,删除符合匹配字串的最短数据${变量名##匹配字串}从头向后开始匹配,删除符合匹配字串的最长数据${变量名%匹配字串}从尾向前开始匹配,删除符合匹配…...
【23.12.29期--Spring篇】Spring的 IOC 介绍
介绍一下Spring的IOC ✔️引言✔️ lOC的优点✔️Spring的IOC✔️ 拓展知识仓✔️IOC是如何实现的? ✔️引言 所谓的IOC (inversion of control) ,就是控制反转的意思。何为控制反转? 在传统的程序设计中,应用程序代码通常控制着对象的创建和…...
【Python排序算法系列】—— 选择排序
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 选择排序 过程演示: 选择排序实现代码: 分析选择排序:…...
会议室占用时间段 - 华为OD统一考试
OD统一考试 题解: Java / Python / C++ 题目描述 现有若干个会议,所有会议共享一个会议室,用数组表示各个会议的开始时间和结束时间, 格式为: [[会议1开始时间,会议1结束时间],[会议2开始时间,会议2结束时间]] 请计算会议室占用时间段。 输入描述 [[会议1开始时间,…...
计算机网络复习5
传输层——端到端 文章目录 传输层——端到端功能传输层的寻址与端口UDPTCPTCP连接管理TCP可靠传输TCP流量控制TCP拥塞控制网络拥塞的处理 功能 从通信和信息处理的角度看,传输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同…...
React Hooks 面试题 | 05.精选React Hooks面试题
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
2024收入最高的编程语言
我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 1.Python Python 是最流行、用途最广泛的语言之一。它通常用于网络开发、数据科学、机器学习等。 以下是 Python 编程语言的一些主要用途: Web 开发&…...
Android笔记(二十三):Paging3分页加载库结合Compose的实现分层数据源访问
在Android笔记(二十二):Paging3分页加载库结合Compose的实现网络单一数据源访问一文中,实现了单一数据源的访问。在实际运行中,往往希望不是单纯地访问网络数据,更希望将访问的网络数据保存到移动终端的SQL…...
Python实现马赛克图片处理
文章目录 读取图片代码1、导入使用包2、读取图片 操作图片1、上下翻转2、左右翻转3、颜色颠倒4、降低图片精度5、打马赛克 说明: 在python中,图片可以看成一个三维的矩阵,第一维控制着垂直方向,第二维控制着水平方向,第…...
你能描述下你对vue生命周期的理解?在created和mounted这两个生命周期中请求数据有什么区别呢?
一、生命周期是什么 生命周期(Life Cycle)的概念应用很广泛,特别是在政治、经济、环境、技术、社会等诸多领域经常出现,其基本涵义可以通俗地理解为“从摇篮到坟墓”(Cradle-to-Grave)的整个过程在Vue中实…...
【经典算法】有趣的算法之---蚁群算法梳理
every blog every motto: You can do more than you think. 0. 前言 蚁群算法记录 1. 简介 蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
