当前位置: 首页 > news >正文

CF1574C Slay the Dragon 题解

CF1574C Slay the Dragon 题解

  • 题目
    • 链接
    • 字面描述
      • 题面翻译
      • 题目描述
      • 输入格式
      • 输出格式
      • 样例 #1
        • 样例输入 #1
        • 样例输出 #1
      • 提示
  • 代码实现

题目

链接

https://www.luogu.com.cn/problem/CF1574C

字面描述

题面翻译

给定长度为 nnn 的序列 aaammm 次询问,每次询问包含两个参数 x,yx,yx,y,你可以给序列任意位置 +1+1+1,最后你需要找出一个位置 ppp ,满足

  • ap≥xa_p\ge xapx
  • ∑i=1nai[i≠p]≥y\displaystyle\sum_{i=1}^n a_i[i\not= p] \ge yi=1nai[i=p]y

最小化 +1+1+1 次数,输出其次数。

限制2≤n≤2×105,1≤m≤2×105,1≤ai,x≤1012,1≤y≤10182\le n\le2\times 10^5,1\le m\le 2\times10^5,1\le a_i,x\le 10^{12},1\le y\le 10^{18}2n2×105,1m2×105,1ai,x1012,1y1018

Translated by 飞丞

题目描述

Recently, Petya learned about a new game “Slay the Dragon”. As the name suggests, the player will have to fight with dragons. To defeat a dragon, you have to kill it and defend your castle. To do this, the player has a squad of $ n $ heroes, the strength of the $ i $ -th hero is equal to $ a_i $ .

According to the rules of the game, exactly one hero should go kill the dragon, all the others will defend the castle. If the dragon’s defense is equal to $ x $ , then you have to send a hero with a strength of at least $ x $ to kill it. If the dragon’s attack power is $ y $ , then the total strength of the heroes defending the castle should be at least $ y $ .

The player can increase the strength of any hero by $ 1 $ for one gold coin. This operation can be done any number of times.

There are $ m $ dragons in the game, the $ i $ -th of them has defense equal to $ x_i $ and attack power equal to $ y_i $ . Petya was wondering what is the minimum number of coins he needs to spend to defeat the $ i $ -th dragon.

Note that the task is solved independently for each dragon (improvements are not saved).

输入格式

The first line contains a single integer $ n $ ( $ 2 \le n \le 2 \cdot 10^5 $ ) — number of heroes.

The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^{12} $ ), where $ a_i $ is the strength of the $ i $ -th hero.

The third line contains a single integer $ m $ ( $ 1 \le m \le 2 \cdot 10^5 $ ) — the number of dragons.

The next $ m $ lines contain two integers each, $ x_i $ and $ y_i $ ( $ 1 \le x_i \le 10^{12}; 1 \le y_i \le 10^{18} $ ) — defense and attack power of the $ i $ -th dragon.

输出格式

Print $ m $ lines, $ i $ -th of which contains a single integer — the minimum number of coins that should be spent to defeat the $ i $ -th dragon.

样例 #1

样例输入 #1

4
3 6 2 3
5
3 12
7 9
4 14
1 10
8 7

样例输出 #1

1
2
4
0
2

提示

To defeat the first dragon, you can increase the strength of the third hero by $ 1 $ , then the strength of the heroes will be equal to $ [3, 6, 3, 3] $ . To kill the dragon, you can choose the first hero.

To defeat the second dragon, you can increase the forces of the second and third heroes by $ 1 $ , then the strength of the heroes will be equal to $ [3, 7, 3, 3] $ . To kill the dragon, you can choose a second hero.

To defeat the third dragon, you can increase the strength of all the heroes by $ 1 $ , then the strength of the heroes will be equal to $ [4, 7, 3, 4] $ . To kill the dragon, you can choose a fourth hero.

To defeat the fourth dragon, you don’t need to improve the heroes and choose a third hero to kill the dragon.

To defeat the fifth dragon, you can increase the strength of the second hero by $ 2 $ , then the strength of the heroes will be equal to $ [3, 8, 2, 3] $ . To kill the dragon, you can choose a second hero.

代码实现

#include<bits/stdc++.h>
#define ll long long
using namespace std;const int maxn=2e5+10;
int n,m;
ll tot;
ll a[maxn];
int main(){scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%lld",&a[i]);tot+=a[i];}sort(a+1,a+n+1);scanf("%d",&m);while(m--){ll x,y;scanf("%lld%lld",&x,&y);if(tot<x+y){if(a[1]>x){printf("%lld\n",y-(tot-a[1]));continue;}int l=1,r=n;while(l<=r){int mid=l+r>>1;if(a[mid]>x)r=mid-1;else if(a[mid]<x)l=mid+1;else break;}int op=l+r>>1;if(y<=tot-a[op])printf("%lld\n",x-a[op]);else printf("%lld\n",x-a[op]+y-(tot-a[op]));continue;}else{if(a[1]>x){if(y>tot-a[1])printf("%lld\n",y-(tot-a[1]));else printf("0\n");continue;}int l=1,r=n;while(l<=r){int mid=l+r>>1;if(a[mid]>x)r=mid-1;else if(a[mid]<x)l=mid+1;else break;}int op=l+r>>1;int op1=op+1;if(tot==x+y){if(op1<=n)printf("%lld\n",min(x-a[op],a[op1]-x));else printf("%lld\n",x-a[op]);}else{if(y<=tot-a[op1]){if(op1<=n)printf("0\n");else printf("%lld\n",x-a[op]);}else {if(op1<=n)printf("%lld\n",min(x-a[op],y-(tot-a[op1])));else printf("%lld\n",x-a[op]);}}}}return 0;
}

相关文章:

CF1574C Slay the Dragon 题解

CF1574C Slay the Dragon 题解题目链接字面描述题面翻译题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示代码实现题目 链接 https://www.luogu.com.cn/problem/CF1574C 字面描述 题面翻译 给定长度为 nnn 的序列 aaa&#xff0c;mmm 次询问&#xff0c;每次询…...

创建Django项目

创建Django项目 步骤 创建Django项目 django-admin startproject name 创建子应用 python manager.py startapp name创建工程 在使用Flask框架时&#xff0c;项目工程目录的组织与创建是需要我们自己手动创建完成的。 在django中&#xff0c;项目工程目录可以借助django提供…...

CUDA中的统一内存

文章目录1. Unified Memory Introduction1.1. System Requirements1.2. Simplifying GPU Programming1.3. Data Migration and Coherency1.4. GPU Memory Oversubscription1.5. Multi-GPU1.6. System Allocator1.7. Hardware Coherency1.8. Access Counters2. Programming Mode…...

利用机器学习(mediapipe)进行人脸468点的3D坐标检测--视频实时检测

上期文章,我们分享了人脸468点的3D坐标检测的图片检测代码实现过程,我们我们介绍一下如何在实时视频中,进行人脸468点的坐标检测。 import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_fac…...

事务基础知识与执行计划

事务基础知识 数据库事务的概念 数据库事务是什么&#xff1f; 事务是一组原子性的SQL操作。事务由事务开始与事务结束之间执行的全部数据库操作组成。A&#xff08;原子性&#xff09;、&#xff08;C一致性&#xff09;、I&#xff08;隔离性&#xff09;、D&#xff08;持久…...

数据库实践LAB大纲 06 INDEX

索引 索引是一个列表 —— 若干列集合和这些值的记录在数据表存储位置的物理地址 作用 加快检索速度唯一性索引 —— 保障数据唯一性加速表的连接分组和排序进行检索的时候 —— 减少时间消耗 一般建立原则 经常查询的数据主键外键连接字段排序字段少涉及、重复值多的字段…...

网络安全实验室6.解密关

6.解密关 1.以管理员身份登录系统 url&#xff1a;http://lab1.xseclab.com/password1_dc178aa12e73cfc184676a4100e07dac/index.php 进入网站点击忘记密码的链接&#xff0c;进入到重置密码的模块 输入aaa&#xff0c;点击抓包&#xff0c;发送到重放模块go 查看返回的链接…...

了解并发编程

并发与并行的概念: 并发:一段时间内(假设只有一个CPU)执行多个线程,多个线程时按顺序执行 并行:同个时间点上,多个线程同时执行(多个CPU) 什么是并发编程? 在现代互联网的应用中,会出现多个请求同时对共享资源的访问情况,例如在买票,秒杀与抢购的场景中 此时就会出现线程安…...

(C语言)程序环境和预处理

问&#xff1a;1. 什么是C语言的源代码&#xff1f;2. 由于计算机只认识什么&#xff1f;因此它只能接收与执行什么&#xff1f;也就是什么&#xff1f;3. 在ANSI C的任何一种实现中&#xff0c;存在哪两个不同的环境&#xff1f;在这两种环境里面分别干什么事情&#xff1f;4.…...

RiProV2主题美化增加支付页底部提示语ritheme主题美化

美化背景 默认的RiProV2主题在支付提示页,是没有这一行提示的 希望增加根据用户类别,未登录用户购买时提示:当前为游客模式购买。或者其他提示,提示用户未登录购买不保存购买记录等。 索引关键字:ritheme主题美化之增加支付页底部提示语,RiProV2主题美化增加支付页底部提…...

2022年文章分类整理

文章目录JetPack系列Kotlin相关View相关多线程相关存储相关Gradle相关动画相关其他2022年公众号(名字&#xff1a;代码说)发表的文章&#xff0c;分类整理一下&#xff0c;方便阅读&#xff01;2023&#xff0c;继续加油&#xff0c;共勉&#xff01;JetPack系列 Android Jetp…...

蓝牙设备中的Device UUID 与 Service UUID

Device UUID也可以被称作为DeviceID。 Android 设备上扫描获取到的 deviceId 为外围设备的 MAC 地址&#xff0c;相对固定。 iOS 设备上扫描获取到的 deviceId 是系统根据外围设备 MAC 地址及发现设备的时间生成的 UUID&#xff0c;是设备上的Core Bluetooth为该设备分配的标识…...

【学习记录】PCA主成分分析 SVD奇异值分解

在看MSC-VO代码的过程中&#xff0c;大量出现了奇异值分解的内容&#xff0c;本身对这部分了解不多&#xff0c;这里补一下课&#xff0c;参考b站up主小旭学长的视频&#xff0c;链接为&#xff1a;PCA主成分分析和SVD主成分分析 PCA主成分分析 PCA根本目的在于让数据在损失尽…...

用 Python 调用 GPT-3 API

用 Python 调用 GPT-3 API GPT-3 是去年由 Open AI 推出的语言机器学习模型。它因其能够写作、写歌、写诗&#xff0c;甚至写代码而获得了广泛的媒体关注&#xff01;该工具免费使用&#xff0c;只需要注册一个电子邮件即可。 GPT-3 是一种叫 transformer 的机器学习模型。具体…...

类和对象实操之【日期类】

✨个人主页&#xff1a; Yohifo &#x1f389;所属专栏&#xff1a; C修行之路 &#x1f38a;每篇一句&#xff1a; 图片来源 The pessimist complains about the wind; the optimist expects it to change; the realist adjusts the sails. 悲观主义者抱怨风;乐观主义者期望它…...

微搭中如何实现弹性布局

我们在实际开发中经常可能会有一些社交的场景&#xff0c;比如开发一个类似朋友圈九宫格图片展示的功能。因为图片的数量不确定&#xff0c;所以需要实现图片的从左到右顺序排列。 在微搭中可以以可视化的方式设置样式。但是对于我们这类特殊需求&#xff0c;只用可视化设置显…...

九龙证券|外资强势出手!这只科创板百元股,被疯狂加仓

本周&#xff0c;北上资金净买入29.32亿元&#xff0c;连续第13周加仓A股。分商场看&#xff0c;北上资金加仓重点倾向于沪市的白马蓝筹股&#xff0c;沪股通取得50.34亿元&#xff0c;深股通则被净卖出21.02亿元。 食品饮料本周取得逾23亿元的增持&#xff0c;居职业首位&…...

51单片机最强模块化封装(4)

文章目录 前言一、创建key文件,添加key文件路径二、key文件编写三、模块化测试总结前言 本篇文章将为大家带来按键的模块化封装,这里使用到了三行按键使得我们的代码更加简便。 按键原理:独立按键 一、创建key文件,添加key文件路径 这里的操作就不过多解释了,大家自行看…...

五、Git本地仓库基本操作——分支管理

1. 什么是分支&#xff1f; master分支 我们在初始化git仓库的时候&#xff0c;会默认创建一个master分支&#xff0c;HEAD指针这时就会默认执行master分支。当我们在master分支提交&#xff08;commit&#xff09;了更新之后&#xff0c;master分支就会指向当前当前最新的co…...

vscode搭建python Django网站开发环境

这里使用pip安装的方式&#xff0c;打开命令行&#xff0c;输入执行&#xff1a; pip install django2.2这里选择安装2.2版本是因为是新的lts版本&#xff0c;长期支持稳定版。 接下来再安装pillow&#xff0c;Django底层一部分是基于pillow进行的。 pip install pillowpylint…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...