CF1574C Slay the Dragon 题解
CF1574C Slay the Dragon 题解
- 题目
- 链接
- 字面描述
- 题面翻译
- 题目描述
- 输入格式
- 输出格式
- 样例 #1
- 样例输入 #1
- 样例输出 #1
- 提示
- 代码实现
题目
链接
https://www.luogu.com.cn/problem/CF1574C
字面描述
题面翻译
给定长度为 nnn 的序列 aaa,mmm 次询问,每次询问包含两个参数 x,yx,yx,y,你可以给序列任意位置 +1+1+1,最后你需要找出一个位置 ppp ,满足
- ap≥xa_p\ge xap≥x
- ∑i=1nai[i≠p]≥y\displaystyle\sum_{i=1}^n a_i[i\not= p] \ge yi=1∑nai[i=p]≥y
最小化 +1+1+1 次数,输出其次数。
限制:2≤n≤2×105,1≤m≤2×105,1≤ai,x≤1012,1≤y≤10182\le n\le2\times 10^5,1\le m\le 2\times10^5,1\le a_i,x\le 10^{12},1\le y\le 10^{18}2≤n≤2×105,1≤m≤2×105,1≤ai,x≤1012,1≤y≤1018
Translated by 飞丞
题目描述
Recently, Petya learned about a new game “Slay the Dragon”. As the name suggests, the player will have to fight with dragons. To defeat a dragon, you have to kill it and defend your castle. To do this, the player has a squad of $ n $ heroes, the strength of the $ i $ -th hero is equal to $ a_i $ .
According to the rules of the game, exactly one hero should go kill the dragon, all the others will defend the castle. If the dragon’s defense is equal to $ x $ , then you have to send a hero with a strength of at least $ x $ to kill it. If the dragon’s attack power is $ y $ , then the total strength of the heroes defending the castle should be at least $ y $ .
The player can increase the strength of any hero by $ 1 $ for one gold coin. This operation can be done any number of times.
There are $ m $ dragons in the game, the $ i $ -th of them has defense equal to $ x_i $ and attack power equal to $ y_i $ . Petya was wondering what is the minimum number of coins he needs to spend to defeat the $ i $ -th dragon.
Note that the task is solved independently for each dragon (improvements are not saved).
输入格式
The first line contains a single integer $ n $ ( $ 2 \le n \le 2 \cdot 10^5 $ ) — number of heroes.
The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^{12} $ ), where $ a_i $ is the strength of the $ i $ -th hero.
The third line contains a single integer $ m $ ( $ 1 \le m \le 2 \cdot 10^5 $ ) — the number of dragons.
The next $ m $ lines contain two integers each, $ x_i $ and $ y_i $ ( $ 1 \le x_i \le 10^{12}; 1 \le y_i \le 10^{18} $ ) — defense and attack power of the $ i $ -th dragon.
输出格式
Print $ m $ lines, $ i $ -th of which contains a single integer — the minimum number of coins that should be spent to defeat the $ i $ -th dragon.
样例 #1
样例输入 #1
4
3 6 2 3
5
3 12
7 9
4 14
1 10
8 7
样例输出 #1
1
2
4
0
2
提示
To defeat the first dragon, you can increase the strength of the third hero by $ 1 $ , then the strength of the heroes will be equal to $ [3, 6, 3, 3] $ . To kill the dragon, you can choose the first hero.
To defeat the second dragon, you can increase the forces of the second and third heroes by $ 1 $ , then the strength of the heroes will be equal to $ [3, 7, 3, 3] $ . To kill the dragon, you can choose a second hero.
To defeat the third dragon, you can increase the strength of all the heroes by $ 1 $ , then the strength of the heroes will be equal to $ [4, 7, 3, 4] $ . To kill the dragon, you can choose a fourth hero.
To defeat the fourth dragon, you don’t need to improve the heroes and choose a third hero to kill the dragon.
To defeat the fifth dragon, you can increase the strength of the second hero by $ 2 $ , then the strength of the heroes will be equal to $ [3, 8, 2, 3] $ . To kill the dragon, you can choose a second hero.
代码实现
#include<bits/stdc++.h>
#define ll long long
using namespace std;const int maxn=2e5+10;
int n,m;
ll tot;
ll a[maxn];
int main(){scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%lld",&a[i]);tot+=a[i];}sort(a+1,a+n+1);scanf("%d",&m);while(m--){ll x,y;scanf("%lld%lld",&x,&y);if(tot<x+y){if(a[1]>x){printf("%lld\n",y-(tot-a[1]));continue;}int l=1,r=n;while(l<=r){int mid=l+r>>1;if(a[mid]>x)r=mid-1;else if(a[mid]<x)l=mid+1;else break;}int op=l+r>>1;if(y<=tot-a[op])printf("%lld\n",x-a[op]);else printf("%lld\n",x-a[op]+y-(tot-a[op]));continue;}else{if(a[1]>x){if(y>tot-a[1])printf("%lld\n",y-(tot-a[1]));else printf("0\n");continue;}int l=1,r=n;while(l<=r){int mid=l+r>>1;if(a[mid]>x)r=mid-1;else if(a[mid]<x)l=mid+1;else break;}int op=l+r>>1;int op1=op+1;if(tot==x+y){if(op1<=n)printf("%lld\n",min(x-a[op],a[op1]-x));else printf("%lld\n",x-a[op]);}else{if(y<=tot-a[op1]){if(op1<=n)printf("0\n");else printf("%lld\n",x-a[op]);}else {if(op1<=n)printf("%lld\n",min(x-a[op],y-(tot-a[op1])));else printf("%lld\n",x-a[op]);}}}}return 0;
}
相关文章:
CF1574C Slay the Dragon 题解
CF1574C Slay the Dragon 题解题目链接字面描述题面翻译题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示代码实现题目 链接 https://www.luogu.com.cn/problem/CF1574C 字面描述 题面翻译 给定长度为 nnn 的序列 aaa,mmm 次询问,每次询…...

创建Django项目
创建Django项目 步骤 创建Django项目 django-admin startproject name 创建子应用 python manager.py startapp name创建工程 在使用Flask框架时,项目工程目录的组织与创建是需要我们自己手动创建完成的。 在django中,项目工程目录可以借助django提供…...

CUDA中的统一内存
文章目录1. Unified Memory Introduction1.1. System Requirements1.2. Simplifying GPU Programming1.3. Data Migration and Coherency1.4. GPU Memory Oversubscription1.5. Multi-GPU1.6. System Allocator1.7. Hardware Coherency1.8. Access Counters2. Programming Mode…...

利用机器学习(mediapipe)进行人脸468点的3D坐标检测--视频实时检测
上期文章,我们分享了人脸468点的3D坐标检测的图片检测代码实现过程,我们我们介绍一下如何在实时视频中,进行人脸468点的坐标检测。 import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_fac…...

事务基础知识与执行计划
事务基础知识 数据库事务的概念 数据库事务是什么? 事务是一组原子性的SQL操作。事务由事务开始与事务结束之间执行的全部数据库操作组成。A(原子性)、(C一致性)、I(隔离性)、D(持久…...

数据库实践LAB大纲 06 INDEX
索引 索引是一个列表 —— 若干列集合和这些值的记录在数据表存储位置的物理地址 作用 加快检索速度唯一性索引 —— 保障数据唯一性加速表的连接分组和排序进行检索的时候 —— 减少时间消耗 一般建立原则 经常查询的数据主键外键连接字段排序字段少涉及、重复值多的字段…...

网络安全实验室6.解密关
6.解密关 1.以管理员身份登录系统 url:http://lab1.xseclab.com/password1_dc178aa12e73cfc184676a4100e07dac/index.php 进入网站点击忘记密码的链接,进入到重置密码的模块 输入aaa,点击抓包,发送到重放模块go 查看返回的链接…...

了解并发编程
并发与并行的概念: 并发:一段时间内(假设只有一个CPU)执行多个线程,多个线程时按顺序执行 并行:同个时间点上,多个线程同时执行(多个CPU) 什么是并发编程? 在现代互联网的应用中,会出现多个请求同时对共享资源的访问情况,例如在买票,秒杀与抢购的场景中 此时就会出现线程安…...

(C语言)程序环境和预处理
问:1. 什么是C语言的源代码?2. 由于计算机只认识什么?因此它只能接收与执行什么?也就是什么?3. 在ANSI C的任何一种实现中,存在哪两个不同的环境?在这两种环境里面分别干什么事情?4.…...

RiProV2主题美化增加支付页底部提示语ritheme主题美化
美化背景 默认的RiProV2主题在支付提示页,是没有这一行提示的 希望增加根据用户类别,未登录用户购买时提示:当前为游客模式购买。或者其他提示,提示用户未登录购买不保存购买记录等。 索引关键字:ritheme主题美化之增加支付页底部提示语,RiProV2主题美化增加支付页底部提…...
2022年文章分类整理
文章目录JetPack系列Kotlin相关View相关多线程相关存储相关Gradle相关动画相关其他2022年公众号(名字:代码说)发表的文章,分类整理一下,方便阅读!2023,继续加油,共勉!JetPack系列 Android Jetp…...
蓝牙设备中的Device UUID 与 Service UUID
Device UUID也可以被称作为DeviceID。 Android 设备上扫描获取到的 deviceId 为外围设备的 MAC 地址,相对固定。 iOS 设备上扫描获取到的 deviceId 是系统根据外围设备 MAC 地址及发现设备的时间生成的 UUID,是设备上的Core Bluetooth为该设备分配的标识…...

【学习记录】PCA主成分分析 SVD奇异值分解
在看MSC-VO代码的过程中,大量出现了奇异值分解的内容,本身对这部分了解不多,这里补一下课,参考b站up主小旭学长的视频,链接为:PCA主成分分析和SVD主成分分析 PCA主成分分析 PCA根本目的在于让数据在损失尽…...

用 Python 调用 GPT-3 API
用 Python 调用 GPT-3 API GPT-3 是去年由 Open AI 推出的语言机器学习模型。它因其能够写作、写歌、写诗,甚至写代码而获得了广泛的媒体关注!该工具免费使用,只需要注册一个电子邮件即可。 GPT-3 是一种叫 transformer 的机器学习模型。具体…...

类和对象实操之【日期类】
✨个人主页: Yohifo 🎉所属专栏: C修行之路 🎊每篇一句: 图片来源 The pessimist complains about the wind; the optimist expects it to change; the realist adjusts the sails. 悲观主义者抱怨风;乐观主义者期望它…...

微搭中如何实现弹性布局
我们在实际开发中经常可能会有一些社交的场景,比如开发一个类似朋友圈九宫格图片展示的功能。因为图片的数量不确定,所以需要实现图片的从左到右顺序排列。 在微搭中可以以可视化的方式设置样式。但是对于我们这类特殊需求,只用可视化设置显…...

九龙证券|外资强势出手!这只科创板百元股,被疯狂加仓
本周,北上资金净买入29.32亿元,连续第13周加仓A股。分商场看,北上资金加仓重点倾向于沪市的白马蓝筹股,沪股通取得50.34亿元,深股通则被净卖出21.02亿元。 食品饮料本周取得逾23亿元的增持,居职业首位&…...
51单片机最强模块化封装(4)
文章目录 前言一、创建key文件,添加key文件路径二、key文件编写三、模块化测试总结前言 本篇文章将为大家带来按键的模块化封装,这里使用到了三行按键使得我们的代码更加简便。 按键原理:独立按键 一、创建key文件,添加key文件路径 这里的操作就不过多解释了,大家自行看…...

五、Git本地仓库基本操作——分支管理
1. 什么是分支? master分支 我们在初始化git仓库的时候,会默认创建一个master分支,HEAD指针这时就会默认执行master分支。当我们在master分支提交(commit)了更新之后,master分支就会指向当前当前最新的co…...

vscode搭建python Django网站开发环境
这里使用pip安装的方式,打开命令行,输入执行: pip install django2.2这里选择安装2.2版本是因为是新的lts版本,长期支持稳定版。 接下来再安装pillow,Django底层一部分是基于pillow进行的。 pip install pillowpylint…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...