当前位置: 首页 > news >正文

Zookeeper之手写一个分布式锁

前言

我之前写了一篇快速上手ZK的文章:https://blog.csdn.net/qq_38974073/article/details/135293106

本篇最要是进一步加深学习ZK,算是一次简单的实践,巩固学习成果。

设计一个分布式锁

对锁的基本要求

  • 可重入:允许同一个应用内的同一个线程重复调用同一个方法;
  • 阻塞:没有拿到锁的线程将进入阻塞。
  • 公平的:先来先得。

实现原理

使用zk作为发号器,每个线程申请锁时会创建一个临时有序节点:

  • 节点编号最小的获得锁,完成业务操作之后删除临时节点;
  • 如果不是最小编号的节点,就监听前一个节点的删除事件,并进入阻塞状态,当触发回调的事件时,唤醒阻塞线程,并重新进行获取锁操作。

锁要求实现的描述:

  • 可重入:对同一个线程,不用重复获取锁,重入计数+1即可;
  • 阻塞:利用CountDownLatch实现,当触发回调时唤醒线程;
  • 公平的:利用zk临时有序节点的特点进行排队,先到先申请锁。

问:申请到锁之后,网络中断怎么办?

  • 临时节点随客户端关闭而被删除

问:如何避免羊群效应?

  • 每个线程只监听前一个节点

关键流程

在这里插入图片描述

关键代码实现

锁的关键方法:

  • 加锁:lock
  • 解锁:unLock
  • 尝试加锁:tryLock

public boolean lock() {if(Thread.currentThread().equals(thread)) {lockCount.incrementAndGet();return true;}while (true) {if (tryLock()) {thread = Thread.currentThread();lockCount.incrementAndGet();return true;}try {await();} catch (Exception e) {throw new RuntimeException(e);}}
}public synchronized boolean unlock() {if (!thread.equals(Thread.currentThread())) {return false;}int newLockCount = lockCount.decrementAndGet();if (newLockCount < 0) {throw new IllegalMonitorStateException("重入锁计数不可为负数" );}// 是否剩余重入次数if (newLockCount != 0) {return true;}// 到这一步,意味着lockCount已经为0,可以删除临时节点了try{if(client.isNodeExist(properties.getZkPath())) {client.deleteNode(lockedPathMap.get(thread));}} catch (Exception e) {return false;} finally {lockedPathMap.remove(thread);priorPathMap.remove(thread);}return true;
}protected boolean tryLock() {String lockedPath = lockedPathMap.get(Thread.currentThread());if (null == lockedPath || !client.isNodeExist(lockedPath)) {lockedPathMap.put(Thread.currentThread(), lockedPath = client.createEphemeralSeqNode(getLockPrefix()));}// 取得加锁的排队编号String lockedShortPath = getShorPath(lockedPath);List<String> waiters = getWaiters();// 如果自己是所有等待锁中的第一个,则获得锁if (checkLocked(waiters, lockedShortPath)) {return true;}// 当前线程节点是否在排队int index = Collections.binarySearch(waiters, lockedShortPath);if(index < 0) {throw new NullPointerException("可能网络抖动,连接断开,临时节点失效");}// waiters最后面的节点写入map,用来监听priorPathMap.put(Thread.currentThread(), getLockPrefix() + waiters.get(index - 1));return false;
}private boolean await() throws Exception {String priorPath = priorPathMap.get(Thread.currentThread());if (null == priorPath) {throw new NullPointerException("prior_path error");}final CountDownLatch latch = new CountDownLatch(1);// 删除事件Watcher w = watchedEvent -> {// 监测到前一个节点发生变化,接下来就可以唤起等待线程,重新尝试获取锁latch.countDown();};try{// 监听前一个节点的删除时间client.watcher(w, priorPath);} catch (KeeperException.NoNodeException e) {e.printStackTrace();return false;}return latch.await(properties.getTimeout(), TimeUnit.MILLISECONDS);
}

好了,如果你对这个感兴趣,不妨拉一下完整源码: https://gitee.com/liangshij/zk-lock-demo

源码简要说明

模块说明

  • lsj-zk-lock:核心实现。
  • lsj-zk-lock-spring-boot-starter:整合springboot
  • lsj-zk-lock-test:使用demo

安装

经典三步走:导包、配置、使用

  1. 拉取代码,将lsj-zk-lock、lsj-zk-lock-spring-boot-starter通过 mvn install 命令安装到本地仓库。
  2. 引入依赖:
<dependency><groupId>cn.lsj</groupId><artifactId>lsj-zk-lock-spring-boot-starter</artifactId><version>2.4.2</version>
</dependency>

配置

  • 配置locks和dataSource:
spring:zk:dataSource:url: "localhost"port: 2181locks:- zkPath: "/test/lock"lockName: "countLock"# 获取锁失败时,进入等待的时间,等待结束将重新尝试获取锁timeout: 5000- zkPath: "/test2/lock"lockName: "lock"timeout: 5000

使用

  • 使用方式1:通过@GlobalLock注解,指定要使用那个lock
@GetMapping("test2")
@GlobalLock("countLock")
public String test2() {// 业务代码return "";
}
  • 使用方式2:通过@Qualifier注解,指定要使用那个lock
@RestController
public class TestController {int count = 0;@Resource@Qualifier("lock")private ReentrantLock lock;@Resource@Qualifier("countLock")private ReentrantLock countLock;@GetMapping("test")public String test() {countLock.lock();try{for (int i = 0; i < 10000; i++) {count++;}} finally {countLock.unlock();}return String.valueOf(count);}
}

相关文章:

Zookeeper之手写一个分布式锁

前言 我之前写了一篇快速上手ZK的文章&#xff1a;https://blog.csdn.net/qq_38974073/article/details/135293106 本篇最要是进一步加深学习ZK&#xff0c;算是一次简单的实践&#xff0c;巩固学习成果。 设计一个分布式锁 对锁的基本要求 可重入&#xff1a;允许同一个应…...

【音视频 ffmpeg 学习】 RTMP推流 mp4文件

1.RTMP(实时消息传输协议)是Adobe 公司开发的一个基于TCP的应用层协议。 2.RTMP协议中基本的数据单元称为消息&#xff08;Message&#xff09;。 3.当RTMP协议在互联网中传输数据的时候&#xff0c;消息会被拆分成更小的单元&#xff0c;称为消息块&#xff08;Chunk&#xff…...

跨进程通信 macOS XPC 创建实例

一&#xff1a;简介 XPC 是 macOS 里苹果官方比较推荐和安全的的进程间通信机制。 集成流程简单&#xff0c;但是比较绕。 主要需要集成 XPC Server 这个模块&#xff0c;这个模块最终会被 apple 的根进程 launchd 管理和以独立进程的方法唤起和关闭&#xff0c; 我们主app 进…...

Python圣诞树代码

Python圣诞树代码 # 小黄 2023/12/25import turtle as t # as就是取个别名&#xff0c;后续调用的t都是turtle from turtle import * import random as rn 100.0speed(20) # 定义速度 pensize(5) # 画笔宽度 screensize(800, 800, bgblack) # 定义背景颜色&#xff0c;可…...

flask之文件管理系统-项目 JRP上线啦!!! ---修订版,兼容Windows和Linux系统

上一章的版本https://blog.csdn.net/weixin_44517278/article/details/135275066&#xff0c;在Windows下debug完成无异常后&#xff0c;上传到我的树莓下开始正式服役 由于开发环境是Windows&#xff0c;使用环境是Linux&#xff0c;导致最后没能成功运行起来 这个版本是今天去…...

希尔排序:排序算法中的调优大师

希尔排序&#xff1a;排序算法中的调优大师 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;让我们一同探讨一个经典而高效的排序算法——希尔排序。…...

LeetCode 1185. 一周中的第几天

一、题目 1、题目描述 给你一个日期&#xff0c;请你设计一个算法来判断它是对应一周中的哪一天。 输入为三个整数&#xff1a;day、month 和 year&#xff0c;分别表示日、月、年。 您返回的结果必须是这几个值中的一个 {"Sunday", "Monday", "Tues…...

大数据学习(30)-Spark Shuffle

&&大数据学习&& &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 承认自己的无知&#xff0c;乃是开启智慧的大门 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一下博主哦&#x1f91…...

Linux部署ELK

大家好&#xff0c;我是升仔 引言 在复杂的系统架构中&#xff0c;日志管理是一个关键的环节。ELK栈提供了一个高效的解决方案&#xff0c;能够帮助我们快速定位问题、分析数据&#xff0c;并实现实时监控。部署ELK栈是一项挑战&#xff0c;但收益巨大。 基础安装和配置 环境准…...

Python 实现 PDF 到 Word 文档的高效转换(DOC、DOCX)

PDF&#xff08;Portable Document Format&#xff09;已成为一种广泛使用的电子文档格式。PDF的主要优势是跨平台&#xff0c;可以在不同设备上呈现一致的外观。然而&#xff0c;当我们需要对文件内容进行编辑或修改&#xff0c;直接编辑PDF文件会非常困难&#xff0c;而且效果…...

【MYSQL】MYSQL 的学习教程(七)之 慢 SQL 优化思路

1. 慢 SQL 优化思路 慢查询日志记录慢 SQLexplain 分析 SQL 的执行计划profile 分析执行耗时Optimizer Trace 分析详情确定问题并采用相应的措施 1. 慢查询日志记录慢 SQL 如何定位慢SQL呢&#xff1f; 我们可以通过 慢查询日志 来查看慢 SQL。 ①&#xff1a;开启慢查询日志…...

unity学习笔记----游戏练习0

一、修复植物种植的问题 1.当手上存在植物时&#xff0c;再次点击卡片上的植物就会在手上添加新的植物&#xff0c;需要修改成只有手上没有植物时才能再次获取到植物。需要修改AddPlant方法。 public bool AddPlant(PlantType plantType) { //防止手上出现多个植…...

ai概念:强人工智能介绍、迁移学习

强人工智能&#xff08;Strong Artificial Intelligence&#xff0c;SAI&#xff09;是指一种具有与人类智能相媲美或超越人类智能水平的人工智能系统。与弱人工智能&#xff08;Weak Artificial Intelligence&#xff0c;WAI&#xff09;不同&#xff0c;强人工智能具有更高级…...

go语言设计模式-单例模式

建造型设计模式-单例模式 是用来控制类型实例的数量的&#xff0c;当需要确保一个类型只有一个实例时&#xff0c;就需要使用单例模式。 即把实例的访问进行收口&#xff0c;不能谁都能 new 类&#xff0c;所以单例模式还会提供一个2访问该实例的全局端口&#xff0c;一般都会…...

超维空间S2无人机使用说明书——51、基础版——使用yolov8进行目标跟踪

引言&#xff1a;为了提高yolo识别的质量&#xff0c;提高了yolo的版本&#xff0c;改用yolov8进行物体识别&#xff0c;同时系统兼容了低版本的yolo&#xff0c;包括基于C的yolov3和yolov4&#xff0c;以及yolov7。 简介&#xff0c;为了提高识别速度&#xff0c;系统采用了G…...

Transformer(seq2seq、self-attention)学习笔记

在self-attention 基础上记录一篇Transformer学习笔记 Transformer的网络结构EncoderDecoder 模型训练与评估 Transformer的网络结构 Transformer是一种seq2seq 模型。输入一个序列&#xff0c;经过encoder、decoder输出结果也是一个序列&#xff0c;输出序列的长度由模型决定…...

2023-12-29 服务器开发-centos部署ftp

摘要: 2023-12-29 服务器开发-centos-部署ftp 部署ftp vsftpd&#xff08;very secure FTP daemon&#xff09;是Linux下的一款小巧轻快、安全易用的FTP服务器软件。本教程介绍如何在Linux实例上安装并配置vsftpd。 前提条件 已创建ECS实例并为实例分配了公网IP地址。 背景…...

螺旋数字阵(100%用例)C卷 (JavaPythonNode.jsC语言C++)

疫情期间,小明隔离在家,百无聊赖,在纸上写数字玩。他发明了一种写法: 给出数字个数n和行数m (0 < n <= 999,0 < m <= 999) ,从左上角的1开始,按照顺时针螺旋向内写方式,依次写出2,3...n,最终形成一个m行矩阵 小明对这个矩阵有些要求 1.每行数字的个数一样多…...

AUTOSAR从入门到精通-网络通信(UDPNm)(二)

目录 前言 原理 UdpNm工作原理 UdpNm与CanNM的区别联系 网络管理算法...

显示器与按键(LCD 1602 + button)

一、实验目的&#xff1a; &#xff08;1&#xff09;学习lcd 1602的编程与使用、 &#xff08;2&#xff09;机械式复位开关button软件消抖的方法。 二、实验内容&#xff1a; 1、必做&#xff1a;先显示开机画面&#xff0c;&#xff1a;在1602显示器上&#xff0c;分两行…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...