Java guava partition方法拆分集合自定义集合拆分方法
日常开发中,经常遇到拆分集合处理的场景,现在记录2中拆分集合的方法。
1. 使用Guava包提供的集合操作工具栏 Lists.partition()方法拆分
首先,引入maven依赖
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>21.0</version>
</dependency>
部分源码
public static <T> List<List<T>> partition(List<T> list, int size) {Preconditions.checkNotNull(list);Preconditions.checkArgument(size > 0);return (List)(list instanceof RandomAccess ? new Lists.RandomAccessPartition(list, size) : new Lists.Partition(list, size));}
Lists.partition方法,根据传入的size,对list进行拆分
使用Demo
public static void main(String[] args) {List<Integer> list = new ArrayList<>();list.add(1);list.add(2);list.add(3);list.add(4);list.add(5);list.add(6);list.add(7);List<List<Integer>> partition = Lists.partition(list, 3);partition.forEach(l -> System.out.println(JSONObject.toJSONString(l)));
}
2. 自定义集合拆分方法partition
使用List的 subList方法自定义集合拆分
/*** 分割集合** @param list 原集合* @param count 分割后,每个集合大小* @return java.util.List<java.util.List<T>>**/public static <T> List<List<T>> partition(List<T> list, int count) {List<List<T>> result = new ArrayList<>();int total = list.size();int pageSize = total % count == 0 ? total / count : total / count + 1;for (int i = 0; i < pageSize; i++) {int start = i * count;int end = Math.min((start + count), total);List<T> ts = list.subList(start, end);result.add(ts);}return result;}
使用Demo
public static void main(String[] args) {List<String> strList = new ArrayList<>();strList.add("一月");strList.add("二月");strList.add("三月");strList.add("四月");strList.add("五月");strList.add("六月");strList.add("七月");strList.add("八月");strList.add("九月");strList.add("十月");strList.add("十一月");List<List<String>> listList = partition(strList, 3);listList.forEach(l -> System.out.println(JSONObject.toJSONString(l)));}
输出结果

相关文章:
Java guava partition方法拆分集合自定义集合拆分方法
日常开发中,经常遇到拆分集合处理的场景,现在记录2中拆分集合的方法。 1. 使用Guava包提供的集合操作工具栏 Lists.partition()方法拆分 首先,引入maven依赖 <dependency><groupId>com.google.guava</groupId><artifa…...
GLTF编辑器-位移贴图实现破碎的路面
在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 位移贴图是一种可以用于增加模型细节和形状的贴图。它能够在渲染时针…...
多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测
多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-BiLSTM麻雀算法优化…...
docker安装Nacos和Rabbitmq
一、安装Nacos 首先需要拉取对应的镜像文件:(切换版本加上对应版本号即可,默认最新版) docker pull nacos/nacos-server 接着挂载目录: mkdir -p /mydata/nacos/logs/ #新建logs目录 mkdir -p …...
Android MVC 写法
前言 Model:负责数据逻辑 View:负责视图逻辑 Controller:负责业务逻辑 持有关系: 1、View 持有 Controller 2、Controller 持有 Model 3、Model 持有 View 辅助工具:ViewBinding 执行流程:View >…...
网络层解读
基本介绍 概述 当两台主机之间的距离较远(如相隔几十或几百公里,甚至几千公里)时,就需要另一种结构的网络,即广域网。广域网尚无严格的定义。通常是指覆盖范围很广(远超过一个城市的范围)的长距离的单个网络。它由一些结点交换机以及连接这些…...
js for和forEach 跳出循环 替代方案
1 for循环跳出 for(let i0;i<10;i){if(i5){break;}console.log(i) }在函数中也可以return跳出循环 function fn(){for(let i0;i<10;i){if(i5){return;}console.log(i)} } fn()for ... of效果同上 2 forEach循环跳出 break会报错 [1,2,3,4,5,6,7,8,9,10].forEach(i>…...
如何使用ArcGIS Pro自动矢量化建筑
相信你在使用ArcGIS Pro的时候已经发现了一个问题,那就是ArcGIS Pro没有ArcScan,在ArcGIS Pro中,Esri确实已经移除了ArcScan,没有了ArcScan我们如何自动矢量化地图,从地图中提取建筑等要素呢,这里为大家介绍…...
交互式笔记Jupyter Notebook本地部署并实现公网远程访问内网服务器
最近,我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念,而且内容风趣幽默。我觉得它对大家可能会有所帮助,所以我在此分享。点击这里跳转到网站。 文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下…...
41.坑王驾到第七期:uniapp开发微信小程序引用组件时报错!
一、错误再现 页面login引用了一个组件register,运行至小程序开发工具报错。 xxx.js 已被代码依赖分析忽略,无法被其他模块引用。 二、解决办法 在微信小程序的配置文件中找到setting节点,增加两个配置项。 “ignoreDevUnusedFiles”: fa…...
挂载与解挂载
一. 挂载 1.什么是挂载 将系统中的文件夹和磁盘做上关联,使用文件夹等于使用磁盘 2.mount 2.1 格式 mount [ -t 类型 ] 存储设备 挂载点目录 mount -o loop ISO镜像文件 挂载点目录 注意:指明要挂载的设备 设备文件:例如:/dev/sda5 卷…...
UGUI Panel的显示和隐藏优化
unity UI如何开启(显示)或者关闭(隐藏)Panel界面,相信大家都是知道的,但是如何做最好呢? 可能大家一般开启/关闭界面的方法就是直接SetActive吧。这样做通常是可以的,简答快速地解决…...
Linux:多文件编辑
多文件编辑 1.使用vim编辑多个文件 编辑多个文件有两种形式,一种是在进入vim前使用的参数就是多个文件。另一种就是进入vim后再编辑其他的文件。 同时创建两个新文件并编辑 $ vim 1.txt 2.txt默认进入1.txt文件的编辑界面 命令行模式下输入:n编辑2.txt文件&…...
模式识别与机器学习-概率图模型
模式识别与机器学习-概率图模型 概率图模型三大基本问题表示推断学习 有向概率图模型例子三种经典的图 HMMViterbi 算法 谨以此博客作为复习期间的记录 概率图模型三大基本问题 概率图模型通常涉及三个基本问题,即表示(Representation)、推…...
RK3566 ANDROID 11 平台上适配移远EC200A
适配前理清楚一下调试的流程: 1.该模块为LGA封装,需要控制上电时序模块才能正常上电工作: 2.模块供电正常后,读取模组的PID 和VID 并将其ID添加到内核里面,确保USB转Serial端口能够正常生成: 3.生成ttyUSB0~ttyUSB2端口后,确保rild进程正常启动,能够正常加载ril库; …...
存算分离降本增效,StarRocks 助力聚水潭 SaaS 业务服务化升级
作者:聚水潭数据研发负责人 溪竹 聚水潭是中国领先的 SaaS 软件服务商,核心产品是电商 ERP,协同350余家电商平台,为商家提供综合的信息化、数字化解决方案。公司是偏线下商家侧的 toB 服务商,员工人数超过3500…...
Linux 内核学习笔记: hlist 的理解
前言 最近阅读 Linux 内核时,遇到了 hlist,这个 hlist 用起来像是普通的链表,但是为何使用 hlist,hlist 是怎么工作的? 相关代码 hlist_add_head(&clk->clks_node, &core->clks); /*** clk_core_link_…...
几种设计模式介绍
前言 设计模式是一种用于解决软件开发中常见问题的通用解决方案,它可以提高代码的可读性、可维护性和可复用性。前端开发中也有很多应用设计模式的场景,比如处理异步操作、优化性能、封装复杂逻辑等。 前端开发中常见的设计模式有以下几种: …...
拓展操作(三) jenkins迁移到另一个机器
让清单成为一种习惯 互联网时代的变革,不再是简单的开发部署上线,持续,正确,安全地把事情做好尤其重要;把事情做好的前提是做一个可量化可执行的清单,让工程师就可以操作的清单而不是专家才能操作: 设定检查点 根据节点执行检查程序操作确认或边读边做 二者选其一不要太…...
重定向和转发的区别
重定向 1、定义 用户通过浏览器发送一个请求,Tomcat服务器接收这个请求,会给浏览器发送一个状态码302,并设置一个重定向的路径,浏览器如果接收到了这个302的状态码以后,就会去自动加载服务器设置的路径 一个页面跳转…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...
