当前位置: 首页 > news >正文

【数值分析】乘幂法,matlab实现

乘幂法

一种求实矩阵 A {A} A按模最大的特征值,及其对应的特征向量 x i {x_i} xi 的方法,只能求一个。特别适合于大型稀疏矩阵。
一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。
每次乘完之后要规范化,防止上溢或下溢。规范化可以用各种范数。
要保证矩阵最大特征值只有一个,有 n {n} n 个线性无关的特征向量。
有多个相同特征值时,求得的特征向量可以近似看成排第一个的最大特征值的特征向量。
步骤:
1. 求初始向量 u 0 模最大元素的编号 i d , 初始特征值 β 0 = u 0 ( i d ) , 求归一化后的初始向量 y 0 2. 迭代 , k = 0 , 1 , ⋯ u k + 1 = A y k β k + 1 = u k + 1 ( i d k ) y k + 1 = u k + 1 ∣ ∣ u k + 1 ∣ ∣ ∞ i d k + 1 = u k + 1 模最大元素的编号 3. 判断是否满足 β k + 1 − β k < eps , 特征值 = β k + 1 \begin{align*}1. &求初始向量u_0模最大元素的编号 id \,\,,\,\, 初始特征值 \beta_0=u_0(id) \,\,,\,\, 求归一化后的初始向量y_0 \\ \\ 2.& 迭代 \,\,,\,\, k=0,1, \cdots \\ \\ & u_{k+1}=Ay_k \\ \\ & \beta_{k+1}=u_{k+1}(id_k) \\ \\ & y_{k+1}= \frac{u_{k+1}}{||u_{k+1}||_\infty} \\ \\ & id_{k+1}=u_{k+1}模最大元素的编号 \\ \\ 3.& 判断是否满足 \,\,\, \beta_{k+1}- \beta_k< \text{eps} \,\,,\,\, 特征值= \beta_{k+1} \end{align*} 1.2.3.求初始向量u0模最大元素的编号id,初始特征值β0=u0(id),求归一化后的初始向量y0迭代,k=0,1,uk+1=Aykβk+1=uk+1(idk)yk+1=∣∣uk+1uk+1idk+1=uk+1模最大元素的编号判断是否满足βk+1βk<eps,特征值=βk+1

[!example]-
A = [ 1 2 1 3 ] , u 0 = [ 0.6 0.8 ] A= \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \,\,,\,\, u_0= \begin{bmatrix} 0.6\\0.8 \end{bmatrix} A=[1123],u0=[0.60.8]
解:
y 0 = u 0 ∣ ∣ u 0 ∣ ∣ ∞ = [ 0.75 1.00 ] y_0= \frac{u_0}{||u_0||_\infty}= \begin{bmatrix} 0.75\\ 1.00 \end{bmatrix} y0=∣∣u0u0=[0.751.00]
u 1 = A y 0 = [ 2.75 3.75 ] u_1=Ay_0 = \begin{bmatrix} 2.75\\3.75 \end{bmatrix} u1=Ay0=[2.753.75]
y 0 {y_0} y0 1 {1} 1 在下面,所以近似最大特征值
β 1 = 3.75 \beta_1= 3.75 β1=3.75
特征向量
y 1 = u 1 ∣ ∣ u 1 ∣ ∣ ∞ = [ 0.7333 1.0000 ] y_1= \frac{u_1}{||u_1||_\infty}= \begin{bmatrix} 0.7333\\ 1.0000 \end{bmatrix} y1=∣∣u1u1=[0.73331.0000]

乘幂法matlab实现

%% 乘幂法例子
A = [12 6 -6; 6 16 2; -6 2 16];
u0 = [1.0, 0.5, -0.5]';
format long
[beta1, i] = powerMethod(A, u0, 1e-6, 10)%% 乘幂法求模最大特征值和特征向量
% 输入矩阵、初始迭代向量、精度、最大迭代次数
% 输出特征值、无穷范数归一化后的特征向量、迭代次数
function [lbd, y1, i] = powerMethod(A, u0, eps, max_iter)[u0norm, id] = max(abs(u0)); % 取无穷范数和其所在行beta0 = u0(id);y0 = u0/ u0norm;for i = 1:max_iteru1 = A*y0;beta1 = u1(id);[u1norm, id] = max(abs(u1));y1 = u1/u1norm;if abs(beta1 - beta0)<epslbd = beta1;break;endy0 = y1; % 当前变成过去beta0 = beta1;end
end

相关文章:

【数值分析】乘幂法,matlab实现

乘幂法 一种求实矩阵 A {A} A 的按模最大的特征值&#xff0c;及其对应的特征向量 x i {x_i} xi​ 的方法&#xff0c;只能求一个。特别适合于大型稀疏矩阵。 一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。 每次乘完之后要规范化&#xff0c;防止上溢或…...

视频监控EasyCVR如何通过设置sei接口,实现在webrtc视频流中添加画框和文字?

安防视频监控系统基于视频综合管理平台EasyCVR视频系统&#xff0c;采用了开放式的网络结构&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;具备权限管…...

智能三维数据虚拟现实电子沙盘

一、概述 易图讯科技&#xff08;www.3dgis.top&#xff09;以大数据、云计算、虚拟现实、物联网、AI等先进技术为支撑&#xff0c;支持高清卫星影像、DEM高程数据、矢量数据、无人机倾斜摄像、BIM模型、点云、城市白模、等高线、标高点等数据融合和切换&#xff0c;智能三维数…...

【SpringCloud】-GateWay源码解析

GateWay系列 【SpringCloud】-GateWay网关 一、背景介绍 当一个请求来到 Spring Cloud Gateway 之后&#xff0c;会经过一系列的处理流程&#xff0c;其中涉及到路由的匹配、过滤器链的执行等步骤。今天我们来说说请求经过 Gateway 的主要执行流程和原理是什么吧 二、正文 …...

华为无线ac双链路冷备和热备配置案例

所谓的冷备和热备&#xff0c;冷备就是不用vrrp和hsb协议同步ap和用户信息&#xff0c;主的断了等七十五秒后&#xff0c;备的capwap和ap连接上去。 双链路冷备不用vrrp和hsb 双链路热备份只用hsb同步ap和用户信息&#xff0c;不用vrrp&#xff0c;两个ac可以不用在同一个二层…...

VSCode Python开发环境配置

目录 1 插件安装2 Debug和测试配置常见问题 1 插件安装 1.1 基础编译插件&#xff0c;Python、Pylance 1.2 修改语言服务器类型&#xff0c;进入用户配置页面搜索Python: Language Server&#xff0c;选择Pylance&#xff08;一定要修改可以提供很多语法提示&#xff09; 1…...

浅谈【GPU和CPU】

GPU和显卡的区别 GPU&#xff08;Graphics Processing Unit&#xff0c;图形处理器&#xff09;通常指的就是显卡。显卡是一种安装在计算机中的扩展卡&#xff0c;主要用于图形和图像处理任务。 GPU作为显卡的核心组件&#xff0c;负责处理图形渲染、图像处理、视频解码和其他…...

啥是构造器?

当我们new一个对象时就是在引用构造器 构造器又叫做构造函数 构造函数一般分为无参构造函数与有参构造函数 假设我们创建一个pet类&#xff0c;这个类里面就会有一个看不见的自动生成的无参构造函数 如果pet类里没有这个隐形的无参构造&#xff0c;我们new一个对象时就会报错…...

Linux基础知识学习2

tree命令的使用 可以看到dir2目录下的这些文件&#xff0c;要想显示dir2的具体结构&#xff0c;可用tree命令 mv命令 它可以实现两个功能 1.将文件移动到另一个目录中 2.对某一个文件进行重命名 1.将文件移动到另一个目录中 这里将dir1中的2.txt移动到他的子目录dir3中 执行…...

Grafana二进制部署并配置prometheus数据源

1、获取grafna二进制安装包 https://grafana.com/grafana/download?pggraf&plcmtdeploy-box-1 grafana官网下载地址 [rootambari-hadoop1 ~]# cd /opt/module/grafana/ [rootambari-hadoop1 grafana]# pwd /opt/module/grafana2、在安装自己的安装目录执行 wget https:…...

时序预测 | Matlab实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SSA-CNN-BiLSTM麻雀算…...

Java中的单元测试

单元测试 单元测试概述: 单元测试是指在软件开发中对软件的最小可测试单元进行测试和验证的过程。最小可测试单元通常是指函数、方法或者类&#xff0c;单元测试可以保证开发人员的代码正确性&#xff0c;同时也方便后期维护和修改。单元测试的主要目的是检测代码的正确性&am…...

143.【Nginx-02】

Nginx-02 (五)、Nginx负载均衡1.负载均衡概述2.负载均衡的原理及处理流程(1).负载均衡的作用 3.负载均衡常用的处理方式(1).用户手动选择(2).DNS轮询方式(3).四/七层负载均衡(4).Nginx七层负载均衡指令 ⭐(5).Nginx七层负载均衡的实现流程 ⭐ 4.负载均衡状态(1).down (停用)(2)…...

代码随想录刷题 | Day2

今日学习目标 一、基础 链表 接下来说一说链表的定义。 链表节点的定义&#xff0c;很多同学在面试的时候都写不好。 这是因为平时在刷leetcode的时候&#xff0c;链表的节点都默认定义好了&#xff0c;直接用就行了&#xff0c;所以同学们都没有注意到链表的节点是如何定…...

C++ enum class 如何使用

enum class 是 C11 引入的一种新的枚举类型&#xff0c;它是对传统 C 风格的枚举的一种改进。enum class 提供了更强大的类型安全性和作用域限定。以下是关于 enum class 的详细介绍和用法说明&#xff1a; 1. 基本语法 enum class EnumName {Enumerator1,Enumerator2,// ...…...

攻防技术-单包攻击防范:扫描、畸形、特殊(HCIP)

单包攻击类型介绍 一、扫描窥探攻击 1、地址扫描攻击防范 攻击介绍 运用ping程序探测目标地址&#xff0c;确定目标系统是否存活。也可使用TCP/UDP报文对目标系统发起探测&#xff08;如TCP ping&#xff09;。 防御方法 检测进入防火墙的ICMP、TCP和UDP报文&#xff0c;根…...

基于 Vue3 和 WebSocket 实现的简单网页聊天应用

首先附上项目介绍,后面详细解释技术细节 1. chat-websocket 一个基于Vue3和WebSocket的简易网络聊天室项目&#xff0c;包括服务端和客户端部分。 项目地址 websocket-chat 下面是项目的主要组成部分和功能&#xff1a; 项目结构 chat-websocket/ |-- server/ # WebSocket 服…...

【MYSQL】MYSQL 的学习教程(八)之 12 种慢 SQL 查询原因

日常开发中&#xff0c;我们经常会遇到数据库慢查询。那么导致数据慢查询都有哪些常见的原因呢&#xff1f;今天就跟大家聊聊导致 MySQL 慢查询的 12 个常见原因&#xff0c;以及对应的解决方法&#xff1a; SQL 没加索引SQL 索引失效limit 深分页问题单表数据量太大join 或者…...

C语言例题3

1.设x、y、z和k都是int型变量&#xff0c;则执行表达式&#xff1a;x&#xff08;y4&#xff0c;z16&#xff0c;k32&#xff09;后&#xff0c;x的值为&#xff08;32&#xff09;&#xff1b; x(y4,z16,k32),x的值为32 理解逗号运算符在c语言中的工作方式&#xff1a;逗号运算…...

很实用的ChatGPT网站——httpchat-zh.com

很实用的ChatGPT网站——http://chat-zh.com/ 今天介绍一个好兄弟开发的ChatGPT网站&#xff0c;网址[http://chat-zh.com/]。这个网站功能模块很多&#xff0c;包含生活、美食、学习、医疗、法律、经济等很多方面。下面简单介绍一些部分功能与大家一起分享。 登录和注册页面…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...