【AIGC-图片生成视频系列-2】八仙过海,各显神通:AI生成视频相关汇总剖析
最近「图片生成视频系列」层出不穷,我拜读并结合实践(对,就是手撕代码,有开源就撕),并对以下几篇文章的相似点以及关键点稍微做个总结:
一. 生成视频中图像的一致性
在图像生成视频的这个过程中,维持生成视频中图像的一致性是个很大的挑战,毕竟我们都不是很能接受,随着视频播放,画风逐渐不对劲。。。
因此,“八仙过海,各显神通”。
1.1 LivePhoto通过引入Reference latent, 并与输入Unet的噪声在通道维度cat操作,同时利用Content Encoder 把输入图片信息注入到Unet网络的每一层(down block, mid block, up block)中,利用‘双保险’来维持生成视频中图像的一致性。
LivePhoto: Real Image Animation with Text-guided Motion Control
1.2 DreaMoving利用Content Guider把人脸信息注入到Unet网络的每一层(down block, mid block, up block)中。其实这里Content Guider的作用与之前腾讯的工作IPAdapter 有点类似,利用IPAdapter的保持“概念”一致的能力来稳住生成视频中图像的一致性。
DreaMoving: A Human Dance Video Generation Framework based on Diffusion Models
1.3 MagicAnimate提出一个Appearance Encoder来专门保留人物的ID 信息,并把相关信息注入到Unet网络的(mid block 和up block)层,以此保证生成视频中人物ID一致性。
MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
1.4 Animate Anyone 的做法和MagicAnimate类似, 也是专门训练了一个ReferenceNet, 用来维持Reference Image的人物形象的。
和MagicAnimate不同的是,这里ReferenceNet的Spatial-Attention层和Cross-Attention是逐层注入到对应的Unet网络所有层,包括(down block, mid block, up block)层。
Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character
二. 生成视频中的运动控制注入
2.1 LivePhoto 把视频中的运动划分为10级,在训练的时候,把运动对应的map与输入噪声latent作cat操作,一起送入Unet网络去噪。待训练完成,在推理阶段就可以通过输入运动的强度来控制生成视频中人物的运动幅度大小。
2.2 DreaMoving 则是专门训练了一个Video ControlNet, 注入控制信息到Unet网络的(mid block 和up block )中。这里的控制信息可以在姿态图(比如openpose或者DW pose),也可以是深度图。
2.3 MagicAnimate 和DreaMoving 类似,也是利用自己训练的Video ControlNet来控制人物的运动,不同的是,MagicAnimate 只能利用Densepose sequence来作为控制条件。不知为啥,MagicAnimate 这么独特,控制方式与众不同。
2.4 Animate Anyone 和DreaMoving 以及MagicAnimate 又有所不同,虽然也是利用姿态来作为控制条件,但并不是类似文本注入的方式直接注入到Unet网络结构中,而是与噪声一起作为输入进入到Unet网络中。
欢迎加入AI杰克王的免费知识星球,海量干货等着你,一起探讨学习AIGC!
移步公众号 「AI杰克王」,更多干货
喜欢的话就点个【赞】呗,您的鼓励和认可是我继续创作的动力。
喜欢就点个赞呗,您的鼓励和认可是我继续创作的动力。
相关文章:

【AIGC-图片生成视频系列-2】八仙过海,各显神通:AI生成视频相关汇总剖析
最近「图片生成视频系列」层出不穷,我拜读并结合实践(对,就是手撕代码,有开源就撕),并对以下几篇文章的相似点以及关键点稍微做个总结: 一. 生成视频中图像的一致性 在图像生成视频的这个过程…...

SpringBoot集成RabbitMq消息队列【附源码】
1. 项目背景 要啥项目背景,就是干!!! SpringBoot版本:2.7.12 2. Rabbit MQ安装 这里讲解使用docker安装RabbitMQ,如果在windows下面安装RabbitMQ,参考下文 【笑小枫的按步照搬系列】Window…...

MySQL数据库的安装与环境配置
下载 下载MySQL8 安装 解压 配置MySQL环境变量 系统环境变量path D:\ProgramFiles\mysql-8.0.20-winx64\bin 1.点击属性 2.点击高级系统设置 3.点击环境变量 4.在系统变量中找到path 注意这里不是用户变量 5.新建后输入解压的地址 MySQL初始化和启动 以管理员身份运行cmd…...

【广州华锐互动】VR科技科普展厅平台:快速、便捷地创建出属于自己的虚拟展馆
随着科技的不断进步,虚拟现实(VR)技术已经在许多领域取得了显著的成果。尤其是在展馆设计领域,VR科技科普展厅平台已经实现了许多令人瞩目的新突破。 VR科技科普展厅平台是广州华锐互动专门为企业和机构提供虚拟展馆设计和制作的在线平台。通过这个平台&…...

XML Extension Supplement
LEGAL ISSUES, COMPANY POLICIES AND STANDARDS Web Services A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. URI和URL URI,全称是统一资源标识符(Uniform Resource Ident…...

手拉手Springboot获取yml配置文件信息
环境介绍 技术栈 springboot3 软件 版本 mysql 8 IDEA IntelliJ IDEA 2022.2.1 JDK 17 Spring Boot 3.1.7 配置文件说明:启动配置文件优先级:properties高于yml 配置文件application.yml yml是 JSON 的超集,简洁而强大…...

行人重识别(ReID)基础知识入门
这里写目录标题 1、ReID技术概述1.1 基本原理1.2 实现流程1.3 重识别存在的技术挑战 2、训练数据格式介绍 1、ReID技术概述 1.1 基本原理 ReID,全称Re-identification,目的是利用各种智能算法在图像数据库中找到与要搜索的目标相似的对象。ReID是图像检…...

【音视频 ffmpeg 学习】 跑示例程序 持续更新中
环境准备 在上一篇文章 把mux.c 拷贝到main.c 中 使用 attribute(unused) 消除警告 __attribute__(unused)/** Copyright (c) 2003 Fabrice Bellard** Permission is hereby granted, free of charge, to any person obtaining a copy* of this software and associated docu…...
前端axios与python库requests的区别
当涉及到发送HTTP请求时,Axios和Python中的requests库都是常用的工具。下面是它们的详细说明: Axios: Axios是一个基于Promise的HTTP客户端,主要用于浏览器和Node.js环境中发送HTTP请求。以下是Axios的一些特点和用法࿱…...
达梦数据库文档
1:达梦数据库(DM8)简介 达梦数据库管理系统是武汉达梦公司推出的具有完全自主知识产权的高性能数据库管理系统,简称DM。达梦数据库管理系统目前最新的版本是8.0版本,简称DM8。 DM8是达梦公司在总结DM系列产品研发与应用经验的基础上…...

CorelDRAW2024新功能有哪些?CorelDRAW2024最新版本更新怎么样?
CorelDRAW2024新功能有哪些?CorelDRAW2024最新版本更新怎么样?让我们带您详细了解! CorelDRAW Graphics Suite 是矢量制图行业的标杆软件,2024年全新版本为您带来多项新功能和优化改进。本次更新强调易用性,包括更强大…...

基于Mapify的在线艺术地图设计
地图是传递空间信息的有效载体,更加美观、生动的地图产品也是我们追求目标。 那么,我们如何才能制出如下图所示这样一幅艺术性较高的地图呢?今天我们来一探究竟吧! 按照惯例,现将网址给出: https://www.m…...

mxxWechatBot微信机器人V2版本文档说明
大家伙,我是雄雄,欢迎关注微信公众号:雄雄的小课堂。 先看这里 一、前言二、mxxWechatBot流程图三、怎么使用? 一、前言 经过不断地探索与研究,mxxWechatBot正式上线,届时全面开放使用。 mxxWechatBot&am…...

红队打靶练习:MISDIRECTION: 1
信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:69:c7:bf, IPv4: 192.168.12.128 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.12.1 00:50:56:c0:00:08 …...

Jmeter吞吐量控制器总结
吞吐量控制器(Throughput Controller) 场景: 在同一个线程组里, 有10个并发, 7个做A业务, 3个做B业务,要模拟这种场景,可以通过吞吐量模拟器来实现。 添加吞吐量控制器 用法1: Percent Executions 在一个线程组内分别建立两个吞吐量控制器, 分别放业务A和业务B …...

【XML】TinyXML 详解(二):接口详解
【C】郭老二博文之:C目录 1、XML测试文件(laoer.xml) <?xml version"1.0" standalone"no" ?> <!-- Hello World !--> <root><child name"childName" id"1"><c_child…...

【机器学习】人工智能概述
人工智能(Artificial Intelligence,简称AI)是一门研究如何使机器能够像人一样思考、学习和执行任务的学科。它是计算机科学的一个重要分支,涉及机器学习、自然语言处理、计算机视觉等多个领域。 人工智能的概念最早可以追溯到20世…...

flink 实时写入 hudi 参数推荐
数据湖任务并行度计算...

传统项目基于tomcat cookie单体会话升级分布式会话解决方案
传统捞项目基于servlet容器 cookie单体会话改造分布式会话方案 ##引入redis,spring-session依赖 <!--redis依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>&…...
Unity 关于json数据的解析方式(LitJson.dll插件)
关于json数据的解析方式(LitJson.dll插件) void ParseItemJson(){TextAsset itemText Resources.Load<TextAsset>("Items");//读取Resources中Items文件,需要将Items文件放到Resources文件夹中string itemJson itemText.te…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...