当前位置: 首页 > news >正文

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

目录

    • 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

Matlab实现贝叶斯变化点检测与时间序列分解
1.Matlab实现贝叶斯变化点检测与时间序列分解,完整源码和数据;
BEAST(突变、季节性和趋势的贝叶斯估计)是一种快速、通用的贝叶斯模型平均算法,用于将时间序列或1D序列数据分解为单个分量,如突变、趋势和周期性/季节性变化,如赵等人(2019)所述。BEAST可用于变化点检测(例如,断点、结构中断、状态变化或异常)、趋势分析、时间序列分解(例如,趋势与季节性)、时间序列分割和中断时间序列分析。
2.运行主程序main即可,其余为函数,无需运行,运行环境matlab2020及以上。
贝叶斯变化点检测和时间序列分解是两种在时间序列分析中常用的技术。

贝叶斯变化点检测(Bayesian Change Point Detection)是一种用于检测时间序列中突变点或结构变化的方法。它基于贝叶斯统计方法,通过考虑数据的先验分布和后验分布来确定变化点的位置和数量。该方法可以应用于多种类型的时间序列。
时间序列分解(Time Series Decomposition)是将时间序列分解为不同组成部分的过程。通常,一个时间序列可以分解为趋势(Trend)、季节性(Seasonality)和残差(Residual)三个部分。趋势表示时间序列的长期趋势变化,季节性表示时间序列在固定周期内的重复模式,而残差则表示无法由趋势和季节性解释的随机波动。时间序列分解可以帮助我们更好地理解时间序列的结构和特征,以及对序列进行预测和分析。

程序设计

  • 完整源码和数据获取方式:Matlab实现贝叶斯变化点检测与时间序列分解。
%% get values from keys. The last arg is the default value if the key is missing from varagin/KeyListstart           = GetValueByKey(KeyList, ValList, 'start',  []);deltat          = GetValueByKey(KeyList, ValList, 'deltat', []);time            = GetValueByKey(KeyList, ValList, 'time',   []);    period          = GetValueByKey(KeyList, ValList, 'period',  []); nsamples_per_period  = GetValueByKey(KeyList, ValList, 'freq',  []); season          = GetValueByKey(KeyList, ValList, 'season',        'harmonic'); sorder_minmax   = GetValueByKey(KeyList, ValList, 'sorder.minmax', [1,5]); scp_minmax      = GetValueByKey(KeyList, ValList, 'scp.minmax',    [0,10]); sseg_min        = GetValueByKey(KeyList, ValList, 'sseg.min',      []); sseg_leftmargin = GetValueByKey(KeyList, ValList, 'sseg.leftmargin',  []); sseg_rightmargin= GetValueByKey(KeyList, ValList, 'sseg.rightmargin', []); deseasonalize   = GetValueByKey(KeyList, ValList, 'deseasonalize', false); detrend         = GetValueByKey(KeyList, ValList, 'detrend', false); torder_minmax   = GetValueByKey(KeyList, ValList, 'torder.minmax', [0,1]); tcp_minmax      = GetValueByKey(KeyList, ValList, 'tcp.minmax',    [0,10]); tseg_min        = GetValueByKey(KeyList, ValList, 'tseg.min',      []);tseg_leftmargin = GetValueByKey(KeyList, ValList, 'tseg.leftmargin',  []); tseg_rightmargin= GetValueByKey(KeyList, ValList, 'tseg.rightmargin', []); precValue       = GetValueByKey(KeyList, ValList, 'precValue',       1.5); precPriorType   = GetValueByKey(KeyList, ValList, 'precPriorType',   'componentwise');    hasOutlierCmpnt = GetValueByKey(KeyList, ValList, 'hasOutlier',        []); ocp_max         = GetValueByKey(KeyList, ValList, 'ocp.max',           10); mcmc_seed       = GetValueByKey(KeyList, ValList, 'mcmc.seed',     0);         mcmc_samples    = GetValueByKey(KeyList, ValList, 'mcmc.samples',  8000);mcmc_thin       = GetValueByKey(KeyList, ValList, 'mcmc.thin',     5); mcmc_burnin     = GetValueByKey(KeyList, ValList, 'mcmc.burnin',   200);mcmc_chainNumber= GetValueByKey(KeyList, ValList, 'mcmc.chains',   3);  ci               = GetValueByKey(KeyList, ValList, 'ci',             false);   printProgressBar = GetValueByKey(KeyList, ValList, 'print.progress', true);     printOptions     = GetValueByKey(KeyList, ValList, 'print.options',  true);    quiet            = GetValueByKey(KeyList, ValList, 'quiet',          false);   gui              = GetValueByKey(KeyList, ValList, 'gui',            false); methods          = GetValueByKey(KeyList, ValList, 'method',        'bayes'); %% Convert the opt parameters to the individual option parameters (e.g., metadata, prior, mcmc, and extra)%......Start of displaying 'MetaData' ......metadata = [];metadata.isRegularOrdered = true;metadata.season           = season;metadata.time             = time;metadata.startTime        = start;metadata.deltaTime        = deltat;if isempty(period) && ~isempty(deltat) && ~isempty(nsamples_per_period) && ~strcmp(season, 'none')period=nsamples_per_period*deltat;end   metadata.period           = period;if strcmp(metadata.season, 'svd')% if isempty(freq)|| freq <= 1.1 || isnan(freq)%     error("When season=svd, freq must be specified and larger than 1.");% end% metadata.svdTerms = svdbasis(y, freq, deseasonalize);endmetadata.missingValue     = NaN;metadata.maxMissingRate   = 0.75;metadata.deseasonalize    = deseasonalize;metadata.detrend          = detrend;metadata.hasOutlierCmpnt  = hasOutlierCmpnt;
%........End of displaying MetaData ........%......Start of displaying 'prior' ......prior = [];prior.modelPriorType	  = 1;if ~strcmp(metadata.season, 'none')              prior.seasonMinOrder   = sorder_minmax(1);prior.seasonMaxOrder   = sorder_minmax(2);prior.seasonMinKnotNum = scp_minmax(1);prior.seasonMaxKnotNum = scp_minmax(2);   prior.seasonMinSepDist = sseg_min;prior.seasonLeftMargin  = sseg_leftmargin;prior.seasonRightMargin = sseg_rightmargin;end   prior.trendMinOrder	  = torder_minmax(1);prior.trendMaxOrder	  = torder_minmax(2);prior.trendMinKnotNum  = tcp_minmax(1);prior.trendMaxKnotNum  = tcp_minmax(2);prior.trendMinSepDist  = tseg_min;prior.trendLeftMargin  = tseg_leftmargin;prior.trendRightMargin = tseg_rightmargin;if hasOutlierCmpntprior.outlierMaxKnotNum = ocp_max;endprior.precValue        = precValue;prior.precPriorType    = precPriorType;
%......End of displaying pripr ......%......Start of displaying 'mcmc' ......mcmc = [];mcmc.seed                      = mcmc_seed;mcmc.samples                   = mcmc_samples;mcmc.thinningFactor            = mcmc_thin;mcmc.burnin                    = mcmc_burnin;mcmc.chainNumber               = mcmc_chainNumber;%mcmc.maxMoveStepSize           = 28mcmc.trendResamplingOrderProb  = 0.1000;mcmc.seasonResamplingOrderProb = 0.1700;mcmc.credIntervalAlphaLevel    = 0.950;
%......End of displaying mcmc ......%......Start of displaying 'extra' ......extra = [];extra.dumpInputData        = true;extra.whichOutputDimIsTime = 1;extra.computeCredible      = ci;extra.fastCIComputation    = true;extra.computeSeasonOrder   = true;extra.computeTrendOrder    = true;extra.computeSeasonChngpt  = true;extra.computeTrendChngpt   = true;extra.computeSeasonAmp     = ~strcmp(metadata.season, 'svd');extra.computeTrendSlope    = true;extra.tallyPosNegSeasonJump= false;extra.tallyPosNegTrendJump = false;extra.tallyIncDecTrendJump = false;extra.printProgressBar     = printProgressBar;extra.printOptions         = printOptions;extra.quiet                = quiet;extra.consoleWidth         = 70;extra.numThreadsPerCPU     = 2;extra.numParThreads        = 0;
%......End of displaying extra ......if (gui)out=Rbeast(' beastv4demo',            y, metadata, prior, mcmc, extra);elseout=Rbeast( strcat('beast_',methods), y, metadata, prior, mcmc, extra);endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解 目录 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现贝叶斯变化点检测与时间序列分解 1.Matlab实现贝叶斯变化点检测与时间序列分解&#xff0c;完…...

Python 操作 MySQL:使用 mysql-connector-python 操作 MySQL 数据库

大家好&#xff0c;我是水滴~~ 当涉及到使用 Python 操作 MySQL 数据库时&#xff0c;mysql-connector-python 库是一个强大而常用的选择。该库提供了与 MySQL 数据库的交互功能&#xff0c;使您能够执行各种数据库操作&#xff0c;如连接数据库、执行查询和插入数据等。在本文…...

虚拟化技术和云计算的关系

1、云计算底层就是虚拟化技术。 &#xff08;1&#xff09;常见的虚拟化技术&#xff1a;VMware&#xff08;闭源的&#xff0c;需要收费&#xff09;、XEN、KVM &#xff08;2&#xff09;大部分公司用的虚拟化方案&#xff1a;XEN、KVM 2、虚拟化的历史 &#xff08;1&am…...

【privateGPT】使用privateGPT训练您自己的LLM

了解如何在不向提供商公开您的私人数据的情况下训练您自己的语言模型 使用OpenAI的ChatGPT等公共人工智能服务的主要担忧之一是将您的私人数据暴露给提供商的风险。对于商业用途&#xff0c;这仍然是考虑采用人工智能技术的公司最大的担忧。 很多时候&#xff0c;你想创建自己…...

权威Scrum敏捷开发企业培训分享

课程简介 Scrum是目前运用最为广泛的敏捷开发方法&#xff0c;是一个轻量级的项目管理和产品研发管理框架。 这是一个两天的实训课程&#xff0c;面向研发管理者、项目经理、产品经理、研发团队等&#xff0c;旨在帮助学员全面系统地学习Scrum和敏捷开发, 帮助企业快速启动敏…...

面试要点,算法,数据结构等练习大全

有趣的算法&#xff0c;面试常常碰到&#xff0c;多种语言实现~ 1 从数组中找出两个数字使得他们的和是给定的数字 tags: #hash 使用一个散列&#xff0c;存储数字和他对应的索引。然后遍历数组&#xff0c;如果另一半在散列当中&#xff0c;那么返回 这两个数的索引&#x…...

八皇后问题(C语言)

了解题意 在一个8x8的棋盘上放置8个皇后&#xff0c;使得任何两个皇后都不能处于同一行、同一列或同一斜线上。问有多少种方法可以放置这8个皇后&#xff1f; 解决这个问题的目标是找到所有符合要求的皇后摆放方式&#xff0c;通常使用回溯算法来求解。回溯算法会尝试所有可能…...

利用网络教育系统构建个性化学习平台

在现代教育中&#xff0c;网络教育系统作为一种创新的学习方式&#xff0c;为学生提供了更加个性化和灵活的学习体验。在本文中&#xff0c;我们将通过简单的技术代码&#xff0c;演示如何构建一个基础的网络教育系统&#xff0c;为学生提供个性化的学习路径和资源。 1. 环境…...

滤波器opencv

在OpenCV中&#xff0c;滤波器用于对图像进行平滑、锐化、边缘检测等操作。以下是一些常用的滤波器及其在OpenCV中的Python代码示例&#xff1a; 均值滤波器&#xff08;平滑图像&#xff09;&#xff1a; import cv2 import numpy as np# 读取图像 image cv2.imread(path_t…...

使用 Docker Compose 部署 Halo 2.x 与 MySQL

使用 Docker Compose 部署 Halo 2.x 与 MySQL 本文主要介绍使用 Docker Compose 部署 Halo 2.x 和 MySQL&#xff0c; 主要针对小白。 有一定基础的&#xff0c; 可以直接去官网查看。 博主博客 https://blog.uso6.comhttps://blog.csdn.net/dxk539687357 一、Docker 与 Dock…...

openGauss学习笔记-179 openGauss 数据库运维-逻辑复制-发布订阅

文章目录 openGauss学习笔记-179 openGauss 数据库运维-逻辑复制-发布订阅179.1 发布179.2 订阅179.3 冲突处理179.4 限制179.5 架构179.6 监控179.7 安全性179.8 配置设置179.9 快速设置 openGauss学习笔记-179 openGauss 数据库运维-逻辑复制-发布订阅 发布和订阅基于逻辑复…...

2023十大编程语言及未来展望

2023十大编程语言及未来展望 1. 2023年十大编程语言排行榜2. 十大编程语言未来展望PythonCCJavaC#JavaScriptPHPVisual BasicSQLAssembly language 1. 2023年十大编程语言排行榜 TIOBE排行榜是根据互联网上有经验的程序员、课程和第三方厂商的数量&#xff0c;并使用搜索引擎&a…...

Docker启动各种服务

文章目录 1 启动MySQL2 启动maven&#xff0c;用于编译java程序3 容器内启动sshd&#xff0c;用于远程编码和调试 1 启动MySQL 守护方式运行一个容器&#xff1a; docker run --name mysql5.7 -e MYSQL_ROOT_PASSWORD123456 -p 3307:3306 -d mysql进入容器&#xff1a; dock…...

AndroidR集成三方Native服务组件

一、背景 该项目为海外欧盟市场版本,需集成三方IDS安全组件,进程运行时注入iptables指令至链表,检测网络运行状态,并收集异常日志并压缩打包成gz文件,提供给Android上层应用上报云端。 二、分析 1、将提供的组件包集成至系统vendor分区 /vendor/bin/idsLogd/vendor/li…...

C++连接数据库(DataBase)之加载外部依赖项

文章目录 在VS中进行配置一、 先找到VS的解决方案资源管理器&#xff1a;二、 找到“属性”&#xff0c;进行附加项配置三、 移植libmysql.dll目录 在VSCode中进行配置依赖文件的移动库文件的移动可能遇到的问题 重点&#xff01;&#xff01;&#xff01;&#xff01;&#xf…...

论文阅读——Slide-Transformer(cvpr2023)

Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention 一、分析 1、改进transformer的几个思路&#xff1a; &#xff08;1&#xff09;将全局感受野控制在较小区域&#xff0c;如&#xff1a;PVT&#xff0c;DAT&#xff0c;使用稀疏全局注意力来…...

【Flink-Kafka-To-Mysql】使用 Flink 实现 Kafka 数据写入 Mysql(根据对应操作类型进行增、删、改操作)

【Flink-Kafka-To-Mysql】使用 Flink 实现 Kafka 数据写入 Mysql&#xff08;根据对应操作类型进行增、删、改操作&#xff09; 1&#xff09;导入依赖2&#xff09;resources2.1.appconfig.yml2.2.application.properties2.3.log4j.properties2.4.log4j2.xml 3&#xff09;uti…...

SpringMVC学习与开发(四)

注&#xff1a;此为笔者学习狂神说SpringMVC的笔记&#xff0c;其中包含个人的笔记和理解&#xff0c;仅做学习笔记之用&#xff0c;更多详细资讯请出门左拐B站&#xff1a;狂神说!!! 11、Ajax初体验 1、伪造Ajax 结果&#xff1a;并未有xhr异步请求 <!DOCTYPE html> &…...

odoo17核心概念view7——listview总体框架分析

这是view系列的第七篇文章&#xff0c;今天主要介绍我们最常用的list视图。 1、先看list_view,这是主文件 /** odoo-module */import { registry } from "web/core/registry"; import { RelationalModel } from "web/model/relational_model/relational_mode…...

大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 DeepSORT车辆跟踪3.1 Deep SORT多目标跟踪算法3.2 算法流程 4 YOLOV5算法4.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; *…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...