当前位置: 首页 > news >正文

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

目录

    • 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

Matlab实现贝叶斯变化点检测与时间序列分解
1.Matlab实现贝叶斯变化点检测与时间序列分解,完整源码和数据;
BEAST(突变、季节性和趋势的贝叶斯估计)是一种快速、通用的贝叶斯模型平均算法,用于将时间序列或1D序列数据分解为单个分量,如突变、趋势和周期性/季节性变化,如赵等人(2019)所述。BEAST可用于变化点检测(例如,断点、结构中断、状态变化或异常)、趋势分析、时间序列分解(例如,趋势与季节性)、时间序列分割和中断时间序列分析。
2.运行主程序main即可,其余为函数,无需运行,运行环境matlab2020及以上。
贝叶斯变化点检测和时间序列分解是两种在时间序列分析中常用的技术。

贝叶斯变化点检测(Bayesian Change Point Detection)是一种用于检测时间序列中突变点或结构变化的方法。它基于贝叶斯统计方法,通过考虑数据的先验分布和后验分布来确定变化点的位置和数量。该方法可以应用于多种类型的时间序列。
时间序列分解(Time Series Decomposition)是将时间序列分解为不同组成部分的过程。通常,一个时间序列可以分解为趋势(Trend)、季节性(Seasonality)和残差(Residual)三个部分。趋势表示时间序列的长期趋势变化,季节性表示时间序列在固定周期内的重复模式,而残差则表示无法由趋势和季节性解释的随机波动。时间序列分解可以帮助我们更好地理解时间序列的结构和特征,以及对序列进行预测和分析。

程序设计

  • 完整源码和数据获取方式:Matlab实现贝叶斯变化点检测与时间序列分解。
%% get values from keys. The last arg is the default value if the key is missing from varagin/KeyListstart           = GetValueByKey(KeyList, ValList, 'start',  []);deltat          = GetValueByKey(KeyList, ValList, 'deltat', []);time            = GetValueByKey(KeyList, ValList, 'time',   []);    period          = GetValueByKey(KeyList, ValList, 'period',  []); nsamples_per_period  = GetValueByKey(KeyList, ValList, 'freq',  []); season          = GetValueByKey(KeyList, ValList, 'season',        'harmonic'); sorder_minmax   = GetValueByKey(KeyList, ValList, 'sorder.minmax', [1,5]); scp_minmax      = GetValueByKey(KeyList, ValList, 'scp.minmax',    [0,10]); sseg_min        = GetValueByKey(KeyList, ValList, 'sseg.min',      []); sseg_leftmargin = GetValueByKey(KeyList, ValList, 'sseg.leftmargin',  []); sseg_rightmargin= GetValueByKey(KeyList, ValList, 'sseg.rightmargin', []); deseasonalize   = GetValueByKey(KeyList, ValList, 'deseasonalize', false); detrend         = GetValueByKey(KeyList, ValList, 'detrend', false); torder_minmax   = GetValueByKey(KeyList, ValList, 'torder.minmax', [0,1]); tcp_minmax      = GetValueByKey(KeyList, ValList, 'tcp.minmax',    [0,10]); tseg_min        = GetValueByKey(KeyList, ValList, 'tseg.min',      []);tseg_leftmargin = GetValueByKey(KeyList, ValList, 'tseg.leftmargin',  []); tseg_rightmargin= GetValueByKey(KeyList, ValList, 'tseg.rightmargin', []); precValue       = GetValueByKey(KeyList, ValList, 'precValue',       1.5); precPriorType   = GetValueByKey(KeyList, ValList, 'precPriorType',   'componentwise');    hasOutlierCmpnt = GetValueByKey(KeyList, ValList, 'hasOutlier',        []); ocp_max         = GetValueByKey(KeyList, ValList, 'ocp.max',           10); mcmc_seed       = GetValueByKey(KeyList, ValList, 'mcmc.seed',     0);         mcmc_samples    = GetValueByKey(KeyList, ValList, 'mcmc.samples',  8000);mcmc_thin       = GetValueByKey(KeyList, ValList, 'mcmc.thin',     5); mcmc_burnin     = GetValueByKey(KeyList, ValList, 'mcmc.burnin',   200);mcmc_chainNumber= GetValueByKey(KeyList, ValList, 'mcmc.chains',   3);  ci               = GetValueByKey(KeyList, ValList, 'ci',             false);   printProgressBar = GetValueByKey(KeyList, ValList, 'print.progress', true);     printOptions     = GetValueByKey(KeyList, ValList, 'print.options',  true);    quiet            = GetValueByKey(KeyList, ValList, 'quiet',          false);   gui              = GetValueByKey(KeyList, ValList, 'gui',            false); methods          = GetValueByKey(KeyList, ValList, 'method',        'bayes'); %% Convert the opt parameters to the individual option parameters (e.g., metadata, prior, mcmc, and extra)%......Start of displaying 'MetaData' ......metadata = [];metadata.isRegularOrdered = true;metadata.season           = season;metadata.time             = time;metadata.startTime        = start;metadata.deltaTime        = deltat;if isempty(period) && ~isempty(deltat) && ~isempty(nsamples_per_period) && ~strcmp(season, 'none')period=nsamples_per_period*deltat;end   metadata.period           = period;if strcmp(metadata.season, 'svd')% if isempty(freq)|| freq <= 1.1 || isnan(freq)%     error("When season=svd, freq must be specified and larger than 1.");% end% metadata.svdTerms = svdbasis(y, freq, deseasonalize);endmetadata.missingValue     = NaN;metadata.maxMissingRate   = 0.75;metadata.deseasonalize    = deseasonalize;metadata.detrend          = detrend;metadata.hasOutlierCmpnt  = hasOutlierCmpnt;
%........End of displaying MetaData ........%......Start of displaying 'prior' ......prior = [];prior.modelPriorType	  = 1;if ~strcmp(metadata.season, 'none')              prior.seasonMinOrder   = sorder_minmax(1);prior.seasonMaxOrder   = sorder_minmax(2);prior.seasonMinKnotNum = scp_minmax(1);prior.seasonMaxKnotNum = scp_minmax(2);   prior.seasonMinSepDist = sseg_min;prior.seasonLeftMargin  = sseg_leftmargin;prior.seasonRightMargin = sseg_rightmargin;end   prior.trendMinOrder	  = torder_minmax(1);prior.trendMaxOrder	  = torder_minmax(2);prior.trendMinKnotNum  = tcp_minmax(1);prior.trendMaxKnotNum  = tcp_minmax(2);prior.trendMinSepDist  = tseg_min;prior.trendLeftMargin  = tseg_leftmargin;prior.trendRightMargin = tseg_rightmargin;if hasOutlierCmpntprior.outlierMaxKnotNum = ocp_max;endprior.precValue        = precValue;prior.precPriorType    = precPriorType;
%......End of displaying pripr ......%......Start of displaying 'mcmc' ......mcmc = [];mcmc.seed                      = mcmc_seed;mcmc.samples                   = mcmc_samples;mcmc.thinningFactor            = mcmc_thin;mcmc.burnin                    = mcmc_burnin;mcmc.chainNumber               = mcmc_chainNumber;%mcmc.maxMoveStepSize           = 28mcmc.trendResamplingOrderProb  = 0.1000;mcmc.seasonResamplingOrderProb = 0.1700;mcmc.credIntervalAlphaLevel    = 0.950;
%......End of displaying mcmc ......%......Start of displaying 'extra' ......extra = [];extra.dumpInputData        = true;extra.whichOutputDimIsTime = 1;extra.computeCredible      = ci;extra.fastCIComputation    = true;extra.computeSeasonOrder   = true;extra.computeTrendOrder    = true;extra.computeSeasonChngpt  = true;extra.computeTrendChngpt   = true;extra.computeSeasonAmp     = ~strcmp(metadata.season, 'svd');extra.computeTrendSlope    = true;extra.tallyPosNegSeasonJump= false;extra.tallyPosNegTrendJump = false;extra.tallyIncDecTrendJump = false;extra.printProgressBar     = printProgressBar;extra.printOptions         = printOptions;extra.quiet                = quiet;extra.consoleWidth         = 70;extra.numThreadsPerCPU     = 2;extra.numParThreads        = 0;
%......End of displaying extra ......if (gui)out=Rbeast(' beastv4demo',            y, metadata, prior, mcmc, extra);elseout=Rbeast( strcat('beast_',methods), y, metadata, prior, mcmc, extra);endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解 目录 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现贝叶斯变化点检测与时间序列分解 1.Matlab实现贝叶斯变化点检测与时间序列分解&#xff0c;完…...

Python 操作 MySQL:使用 mysql-connector-python 操作 MySQL 数据库

大家好&#xff0c;我是水滴~~ 当涉及到使用 Python 操作 MySQL 数据库时&#xff0c;mysql-connector-python 库是一个强大而常用的选择。该库提供了与 MySQL 数据库的交互功能&#xff0c;使您能够执行各种数据库操作&#xff0c;如连接数据库、执行查询和插入数据等。在本文…...

虚拟化技术和云计算的关系

1、云计算底层就是虚拟化技术。 &#xff08;1&#xff09;常见的虚拟化技术&#xff1a;VMware&#xff08;闭源的&#xff0c;需要收费&#xff09;、XEN、KVM &#xff08;2&#xff09;大部分公司用的虚拟化方案&#xff1a;XEN、KVM 2、虚拟化的历史 &#xff08;1&am…...

【privateGPT】使用privateGPT训练您自己的LLM

了解如何在不向提供商公开您的私人数据的情况下训练您自己的语言模型 使用OpenAI的ChatGPT等公共人工智能服务的主要担忧之一是将您的私人数据暴露给提供商的风险。对于商业用途&#xff0c;这仍然是考虑采用人工智能技术的公司最大的担忧。 很多时候&#xff0c;你想创建自己…...

权威Scrum敏捷开发企业培训分享

课程简介 Scrum是目前运用最为广泛的敏捷开发方法&#xff0c;是一个轻量级的项目管理和产品研发管理框架。 这是一个两天的实训课程&#xff0c;面向研发管理者、项目经理、产品经理、研发团队等&#xff0c;旨在帮助学员全面系统地学习Scrum和敏捷开发, 帮助企业快速启动敏…...

面试要点,算法,数据结构等练习大全

有趣的算法&#xff0c;面试常常碰到&#xff0c;多种语言实现~ 1 从数组中找出两个数字使得他们的和是给定的数字 tags: #hash 使用一个散列&#xff0c;存储数字和他对应的索引。然后遍历数组&#xff0c;如果另一半在散列当中&#xff0c;那么返回 这两个数的索引&#x…...

八皇后问题(C语言)

了解题意 在一个8x8的棋盘上放置8个皇后&#xff0c;使得任何两个皇后都不能处于同一行、同一列或同一斜线上。问有多少种方法可以放置这8个皇后&#xff1f; 解决这个问题的目标是找到所有符合要求的皇后摆放方式&#xff0c;通常使用回溯算法来求解。回溯算法会尝试所有可能…...

利用网络教育系统构建个性化学习平台

在现代教育中&#xff0c;网络教育系统作为一种创新的学习方式&#xff0c;为学生提供了更加个性化和灵活的学习体验。在本文中&#xff0c;我们将通过简单的技术代码&#xff0c;演示如何构建一个基础的网络教育系统&#xff0c;为学生提供个性化的学习路径和资源。 1. 环境…...

滤波器opencv

在OpenCV中&#xff0c;滤波器用于对图像进行平滑、锐化、边缘检测等操作。以下是一些常用的滤波器及其在OpenCV中的Python代码示例&#xff1a; 均值滤波器&#xff08;平滑图像&#xff09;&#xff1a; import cv2 import numpy as np# 读取图像 image cv2.imread(path_t…...

使用 Docker Compose 部署 Halo 2.x 与 MySQL

使用 Docker Compose 部署 Halo 2.x 与 MySQL 本文主要介绍使用 Docker Compose 部署 Halo 2.x 和 MySQL&#xff0c; 主要针对小白。 有一定基础的&#xff0c; 可以直接去官网查看。 博主博客 https://blog.uso6.comhttps://blog.csdn.net/dxk539687357 一、Docker 与 Dock…...

openGauss学习笔记-179 openGauss 数据库运维-逻辑复制-发布订阅

文章目录 openGauss学习笔记-179 openGauss 数据库运维-逻辑复制-发布订阅179.1 发布179.2 订阅179.3 冲突处理179.4 限制179.5 架构179.6 监控179.7 安全性179.8 配置设置179.9 快速设置 openGauss学习笔记-179 openGauss 数据库运维-逻辑复制-发布订阅 发布和订阅基于逻辑复…...

2023十大编程语言及未来展望

2023十大编程语言及未来展望 1. 2023年十大编程语言排行榜2. 十大编程语言未来展望PythonCCJavaC#JavaScriptPHPVisual BasicSQLAssembly language 1. 2023年十大编程语言排行榜 TIOBE排行榜是根据互联网上有经验的程序员、课程和第三方厂商的数量&#xff0c;并使用搜索引擎&a…...

Docker启动各种服务

文章目录 1 启动MySQL2 启动maven&#xff0c;用于编译java程序3 容器内启动sshd&#xff0c;用于远程编码和调试 1 启动MySQL 守护方式运行一个容器&#xff1a; docker run --name mysql5.7 -e MYSQL_ROOT_PASSWORD123456 -p 3307:3306 -d mysql进入容器&#xff1a; dock…...

AndroidR集成三方Native服务组件

一、背景 该项目为海外欧盟市场版本,需集成三方IDS安全组件,进程运行时注入iptables指令至链表,检测网络运行状态,并收集异常日志并压缩打包成gz文件,提供给Android上层应用上报云端。 二、分析 1、将提供的组件包集成至系统vendor分区 /vendor/bin/idsLogd/vendor/li…...

C++连接数据库(DataBase)之加载外部依赖项

文章目录 在VS中进行配置一、 先找到VS的解决方案资源管理器&#xff1a;二、 找到“属性”&#xff0c;进行附加项配置三、 移植libmysql.dll目录 在VSCode中进行配置依赖文件的移动库文件的移动可能遇到的问题 重点&#xff01;&#xff01;&#xff01;&#xff01;&#xf…...

论文阅读——Slide-Transformer(cvpr2023)

Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention 一、分析 1、改进transformer的几个思路&#xff1a; &#xff08;1&#xff09;将全局感受野控制在较小区域&#xff0c;如&#xff1a;PVT&#xff0c;DAT&#xff0c;使用稀疏全局注意力来…...

【Flink-Kafka-To-Mysql】使用 Flink 实现 Kafka 数据写入 Mysql(根据对应操作类型进行增、删、改操作)

【Flink-Kafka-To-Mysql】使用 Flink 实现 Kafka 数据写入 Mysql&#xff08;根据对应操作类型进行增、删、改操作&#xff09; 1&#xff09;导入依赖2&#xff09;resources2.1.appconfig.yml2.2.application.properties2.3.log4j.properties2.4.log4j2.xml 3&#xff09;uti…...

SpringMVC学习与开发(四)

注&#xff1a;此为笔者学习狂神说SpringMVC的笔记&#xff0c;其中包含个人的笔记和理解&#xff0c;仅做学习笔记之用&#xff0c;更多详细资讯请出门左拐B站&#xff1a;狂神说!!! 11、Ajax初体验 1、伪造Ajax 结果&#xff1a;并未有xhr异步请求 <!DOCTYPE html> &…...

odoo17核心概念view7——listview总体框架分析

这是view系列的第七篇文章&#xff0c;今天主要介绍我们最常用的list视图。 1、先看list_view,这是主文件 /** odoo-module */import { registry } from "web/core/registry"; import { RelationalModel } from "web/model/relational_model/relational_mode…...

大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 DeepSORT车辆跟踪3.1 Deep SORT多目标跟踪算法3.2 算法流程 4 YOLOV5算法4.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; *…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...