最优化方法Python计算:无约束优化应用——神经网络回归模型
人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》中讨论的逻辑回归模型(如下图(b)所示)与神经元十分相似,由输入端接收数据 x = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix} x= x1x2⋮xn ,作加权和 ∑ i = 1 n w i x i \sum\limits_{i=1}^nw_ix_i i=1∑nwixi加上偏移量 b b b,即 ∑ i = 1 n w i x i + b \sum\limits_{i=1}^nw_ix_i+b i=1∑nwixi+b,用逻辑函数将其映射到区间 ( 0 , 1 ) (0,1) (0,1)内,然后将如此变换所得的信息 y y y输出。

这启发人们将诸多逻辑回归模型分层连接起来,构成人工神经网络,创建出多层感应模型。下图展示了一个包括输入层、输出层和两个隐藏层(图中阴影部分)的人工神经网络。图中,黑点表示数据节点,圆圈表示人工神经元的处理节点。

记逻辑函数 sigmoid ( x ) = 1 1 + e − x = φ ( x ) \text{sigmoid}(x)=\frac{1}{1+e^{-x}}=\varphi(x) sigmoid(x)=1+e−x1=φ(x)。设多层感应模型的输入数据为 n n n维向量 x = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix} x= x1x2⋮xn 。不算输入层,模型连同输出层及隐藏层共有 l l l层。记 m 0 = n m_0=n m0=n,第 i i i层( 0 < i ≤ l 0<i\leq l 0<i≤l)含有 m i m_i mi个神经元。于是,相邻的两层,第 i − 1 i-1 i−1和第 i i i之间共有 ( m i − 1 + 1 ) m i (m_{i-1}+1)m_{i} (mi−1+1)mi个待定参数。因此,模型具有
p = ∑ i = 1 l ( m i − 1 + 1 ) m i p=\sum_{i=1}^l(m_{i-1}+1)m_i p=i=1∑l(mi−1+1)mi
个待定参数,组织成 p p p维向量 w = ( w 1 w 2 ⋮ w p ) \boldsymbol{w}=\begin{pmatrix} w_1\\w_2\\\vdots\\w_p \end{pmatrix} w= w1w2⋮wp 。设 k 0 = 0 k_0=0 k0=0,对 1 < i ≤ l 1<i\leq l 1<i≤l, k i = ∑ t = 0 i − 1 ( m t + 1 ) m t + 1 k_i=\sum\limits_{t=0}^{i-1}(m_{t}+1)m_{t+1} ki=t=0∑i−1(mt+1)mt+1,记 ( m i − 1 − 1 ) × m i (m_{i-1}-1)\times m_i (mi−1−1)×mi矩阵
w i = ( w k i + 1 ⋯ w k i + ( m i − 1 + 1 ) ( m i − 1 ) + 1 ⋮ ⋱ ⋮ w k i + ( m i − 1 + 1 ) ⋯ w k i + ( m i − 1 + 1 ) m i ) , i = 1 , 2 ⋯ , l \boldsymbol{w}_i=\begin{pmatrix} w_{k_i+1}&\cdots&w_{k_i+(m_{i-1}+1)(m_i-1)+1}\\ \vdots&\ddots&\vdots\\ w_{k_i+(m_{i-1}+1)}&\cdots&w_{k_i+(m_{i-1}+1)m_i} \end{pmatrix}, i=1,2\cdots,l wi= wki+1⋮wki+(mi−1+1)⋯⋱⋯wki+(mi−1+1)(mi−1)+1⋮wki+(mi−1+1)mi ,i=1,2⋯,l
定义函数
F ( w ; x ) = φ ( ( ⋯ φ ⏟ l ( ( x ⊤ , 1 ) w 1 ) , 1 ) , ⋯ ) , 1 ) w l ) . F(\boldsymbol{w};\boldsymbol{x})=\underbrace{\varphi((\cdots\varphi}_l((\boldsymbol{x}^\top,1)\boldsymbol{w}_1),1),\cdots),1)\boldsymbol{w}_l). F(w;x)=l φ((⋯φ((x⊤,1)w1),1),⋯),1)wl).
该函数反映了数据从输入层到输出层的传输方向,称为前向传播函数,作为多层感应模型的拟合函数。按此定义,我们构建如下的多层感应模型类
import numpy as np #导入numpy
class MLPModel(LogicModel): #多层感应模型def construct(self, X, hidden_layer_sizes): #确定网络结构if len(X.shape)==1: #计算输入端节点数k = 1else:k = X.shape[1]self.layer_sizes = (k,)+hidden_layer_sizes+(1,) def patternlen(self): #模式长度p = 0l = len(self.layer_sizes) #总层数for i in range(l-1): #逐层累加m = self.layer_sizes[i]n = self.layer_sizes[i+1]p += (m+1)*nreturn pdef F(self, w, x): #拟合函数l = len(self.layer_sizes) #总层数m, n = self.layer_sizes[0],self.layer_sizes[1]k = (m+1)*n #第0层参数个数W = w[0:k].reshape(m+1,n) #0层参数折叠为矩阵z = LogicModel.F(self, W, x) #第1层的输入for i in range(1, l-1): #逐层计算m = self.layer_sizes[i] #千层节点数n = self.layer_sizes[i+1] #后层节点数W = w[k:k+(m+1)*n].reshape(m+1,n) #本层参数矩阵z = np.hstack((z, np.ones(z.shape[0]). #本层输入矩阵reshape(z.shape[0], 1)))z = LogicModel.F(self, W, z) #下一层输入k += (m+1)*n #下一层参数下标起点y = z.flatten() #展平输出return ydef fit(self, X, Y, w = None, hidden_layer_sizes = (100,)): #重载训练函数self.construct(X, hidden_layer_sizes)LogicModel.fit(self, X, Y, w)
class MLPRegressor(Regression, MLPModel):'''神经网络回归模型'''
MLPModel继承了LogicModel类(详见博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》)在MLPModel中除了重载模式长度计算函数patternlen、拟合函数F和训练函数fit外,增加了一个LogicModel类所没有的对象函数construct,用来确定神经网络的结构:有少层,各层有多少个神经元。
具体而言,第3~8行的construct函数,利用传递给它的输入矩阵X和隐藏层结构hidden_layer_sizes,这是一个元组,计算神经网络的各层结构。第4~7行的if-else分支按输入数据X的形状确定输入层的节点数k。第8行将元组(k,1)和(1,)分别添加在hidden_layer_sizes的首尾两端,即确定了网络结构layer_sizes。
第9~16行重载了模式长度计算函数patternlen。第11行根据模型的结构元组layer_sizes的长度确定层数l。第12~15行的for循环组成计算各层的参数个数:m为前层节点数(第13行),n为后层节点数(第14行),则第15行中(m+1)*n就是本层的参数个数,这是因为后层的每个节点的输入必须添加一个偏移量。第16行将算得的本层参数个数累加到总数p(第10行初始化为0)。
第17~32行重载拟合函数F,参数中w表示模式 w ∈ R p \boldsymbol{w}\in\text{R}^p w∈Rp,x表示自变量 ( x ⊤ , 1 ) (\boldsymbol{x}^\top,1) (x⊤,1)。第18行读取网络层数l。第19~22行计算第1隐藏层的输入:第19行读取第0层节点数m第1隐藏层节点数n。第20行计算第0层参数个数k(也是第1层参数下标起点)。第22行构造第0层的参数矩阵W。第22行计算 φ ( ( x ⊤ , 1 ) w 1 ) \varphi((\boldsymbol{x}^\top,1)\boldsymbol{w}_1) φ((x⊤,1)w1),作为第1隐藏层的输入z。第23~20行的for循环依次逐层构造本层参数矩阵 w i \boldsymbol{w}_i wi(第26行)和输入 ( z i ⊤ , 1 ) (\boldsymbol{z}_i^\top,1) (zi⊤,1)(第27~28行),第30行计算下一层的输入 φ ( ( z i ⊤ , 1 ) w i ) \varphi((\boldsymbol{z}_i^\top,1)\boldsymbol{w}_i) φ((zi⊤,1)wi)为z,第30行更新下一层参数下标起点k。完成循环,所得y因为是矩阵运算的结果,第31层将其扁平化为一维数组。第33~35行重载训练函数fit。与其祖先LogicModel的(也是LineModel)fit函数相比,多了一个表示网络结构的参数hidden_layer_sizes。如前所述,这是一个元组,缺省值为(100,),意味着只有1个隐藏层,隐藏层含100个神经元。函数体内第34行调用自身的construct函数,构造网络结构layer_sizes,供调用拟合函数F时使用。第35行调用祖先LogicModel的fit函数完成训练。
第36~37用Regression类和MLPModel类联合构成用于预测的多层感应模型类MLPRegressor。
理论上,只要给定足够多的隐藏层和层内所含神经元,多层感应模型能拟合任意函数。
例1 用MLPRegressor对象拟合函数 y = x 2 y=x^2 y=x2。
解:先构造训练数据:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
np.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
plt.scatter(x, y)
plt.show()
第5行产生50个服从均匀分布 U ( 0 , 1 ) U(0,1) U(0,1)的随机数值,赋予x。第6行计算x的平方赋予y。第7行绘制 ( x , y ) (x,y) (x,y)散点图。

用仅含一个隐藏层,隐藏层中包含3个神经元的多层感应器拟合 y = x 2 y=x^2 y=x2
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
nnw = MLPRegressor()
nnw.fit(x,y,hidden_layer_sizes = (3,))
yp, acc = nnw.test(x, y)
plt.scatter(x, yp)
plt.show()
print('1隐藏层含3个神经元网络拟合均方根误差%.4f'%acc)
前5行与前同。第6行创建MLPRegressor类对象nnw。第7行用x,y训练nnw为含1个隐藏层,隐藏层含3个神经元的神经网络。第8行调用nnw的test函数,用返回的yp绘制 ( x , y p ) (x,y_p) (x,yp)散点图。

训练中...,稍候
726次迭代后完成训练。
1隐藏层含3个神经元网络拟合均方根误差0.0238
用含两个隐藏层,分别包含7个、3个神经元的多层感应器拟合 y = x 2 y=x^2 y=x2
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
nnw = MLPRegressor()
nnw.fit(x, y, hidden_layer_sizes = (7, 3))
yp, acc = nnw.test(x,y)
plt.scatter(x, yp)
plt.show()
print('2隐藏层含各7,3个神经元网络拟合方根误差%.4f'%acc)
与上一段代码比较,仅第8行训练nnw的网络换成两个隐藏层,分别包含7个、3个神经元的多层感应器。运行程序,输出

训练中...,稍候
1967次迭代后完成训练。
2隐藏层含各7,3个神经元网络拟合方根误差0.0053
比前一个显然拟合得更好,但也付出了计算时间的代价。
Say good bye, 2023.
相关文章:
最优化方法Python计算:无约束优化应用——神经网络回归模型
人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约…...
Spring Data Redis对象缓存序列化问题
相信在项目中,你一定是经常使用 Redis ,那么,你是怎么使用的呢?在使用时,有没有遇到同我一样,对象缓存序列化问题的呢?那么,你又是如何解决的呢? Redis 使用示例 添加依…...
自动驾驶代客泊车AVP巡航规划详细设计
目 录 巡航规划详细设计... 1 修改记录... 2 目 录... 3 1 背景... 5 2 系统环境... 6 2.1 巡航规划与其它模块联系... 6 2.2 巡航规划接口说明... 6 3 规划模块设计... 9 3.1 巡航规划架构图... 9 3.2 预处理... 10 3.3 Planner. 10 3.3.1 Geometry planner. 10 …...
亚马逊云科技 re:Invent 2023 产品体验:亚马逊云科技产品应用实践 国赛选手带你看 Elasticache Serverless
抛砖引玉 讲一下作者背景,曾经参加过国内世界技能大赛云计算的选拔,那么在竞赛中包含两类,一类是架构类竞赛,另一类就是 TroubleShooting 竞赛,对应的分别为亚马逊云科技 GameDay 和亚马逊云科技 Jam,想必…...
Flink on K8S集群搭建及StreamPark平台安装
1.环境准备 1.1 介绍 在使用 Flink&Spark 时发现从编程模型, 启动配置到运维管理都有很多可以抽象共用的地方, 目前streampark提供了一个flink一站式的流处理作业开发管理平台, 从流处理作业开发到上线全生命周期都做了支持, 是一个一站式的流出来计算平台。 未来spark开…...
SpringBoot如何优雅的处理免登录接口
在项目开发过程中,会有很多API接口不需要登录就能直接访问,比如公开数据查询之类的 ~ 常规处理方法基本是 使用拦截器或过滤器,拦截需要认证的请求路径。在拦截器中判断session或token信息,如果存在则放行,否则跳转到…...
元旦档首日票房超4.69亿,“下雪场尴尬”上热搜!
哇塞,元旦假期终于来啦!🎉在这个喜庆的时刻,电影院也热闹非凡,据猫眼专业版数据显示,截至12月30日,2023年元旦档首日票房竟然超过了4.69亿!这简直是个天文数字啊!&#x…...
CentOS系统中设置IP地址的方式和存在的问题
在CentOS系统中设置IP地址通常涉及以下步骤: 打开网络接口配置文件: 使用文本编辑器(如vi、nano或emacs)打开 /etc/sysconfig/network-scripts/ifcfg-eth0 文件。这里的"eth0"是网卡的名称,如果你的系统中有…...
使用vmware,在ubuntu18.04中使用笔记本的摄像头
步骤1:在windows中检查相机状态 win10系统中,在左下的搜索栏,搜索“相机”,点击进入即可打开相机,并正常显示图像。 注意:如果相机连接到了虚拟机,则不能显示正常。 步骤2:在ubuntu…...
中间件系列 - Redis入门到实战(高级篇-分布式缓存)
前言 学习视频: 黑马程序员Redis入门到实战教程,深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目 中间件系列 - Redis入门到实战 本内容仅用于个人学习笔记,如有侵扰,联系删除 学习目标 Redis持久化Redis主从…...
使用Visual Studio调试VisionPro脚本
使用Visual Studio调试VisionPro脚本 方法一 : 修改项目文件 csproj步骤: 方法二 : Visual Studio附加功能步骤: 方法一 : 修改项目文件 csproj 步骤: 开启VisionPro脚本调试功能 创建一个VisionPro程序…...
Ubuntu安装K8S的dashboard(管理页面)
原文网址:Ubuntu安装k8s的dashboard(管理页面)-CSDN博客 简介 本文介绍Ubuntu安装k8s的dashboard(管理页面)的方法。 Dashboard的作用有:便捷操作、监控、分析、概览。 相关网址 官网地址:…...
zookeeper之集群搭建
1. 集群角色 zookeeper集群下,有3种角色,分别是领导者(Leader)、跟随着(Follower)、观察者(Observer)。接下来我们分别看一下这三种角色的作用。 领导者(Leader): 事务请求(写操作)的唯一调度者和处理者,保…...
从0开始界面设计师 Qt Designer
QT程序界面的 一个个窗口、控件,就是像上面那样用相应的代码创建出来的。 但是,把你的脑海里的界面,用代码直接写出来,是有些困难的。 很多时候,运行时呈现的样子,不是我们要的。我们经常还要修改代码调整界…...
Html / CSS刷题笔记
WebKit是一个开源的浏览器引擎,它最初是由苹果公司开发的,并且被广泛用于Safari浏览器和其他基于WebKit的浏览器,比如Google Chrome的早期版本。它也是构建许多移动设备浏览器的基础。WebKit的主要功能是解析HTML和CSS,并将其渲染…...
关于“Python”的核心知识点整理大全51
目录 17.2.2 添加自定义工具提示 bar_descriptions.py 17.2.3 根据数据绘图 python_repos.py 17.2.4 在图表中添加可单击的链接 python_repos.py 17.3 Hacker News API hn_submissions.py 17.4 小结 往期快速传送门👆(在文章最后)&a…...
Termius for Mac/Win:一站式终端模拟器、SSH 和 SFTP 客户端软件的卓越选择
随着远程工作和云技术的普及,对于高效安全的远程访问和管理服务器变得至关重要。Termius,一款强大且易用的终端模拟器、SSH 和 SFTP 客户端软件,正是满足这一需求的理想选择。 Termius 提供了一站式的解决方案,允许用户通过单一平…...
vr体验馆用什么软件计时计费,如遇到停电软件程序如何恢复时间
vr体验馆用什么软件计时计费,如遇到停电软件程序如何恢复时间 一、软件程序问答 如下图,软件以 佳易王vr体验馆计时计费软件V17.9为例说明 1、软件如何计时间? 点击相应编号的开始计时按钮即可 2、遇到停电再打开软件时间可以恢复吗&…...
HTML---JavaScript基础
文章目录 目录 文章目录 本章目标 一.JavaScript基础 概述 特点 JavaScript 基本机构 语法 网页中引用JavaScript的方式 二. JavaScript核心语法 变量 编辑 数据类型 数组 练习 本章目标 掌握JavaScript的组成掌握JavaScript的基本语法会定义和使用函数会使用工具进行…...
2023年03月17日_微软和谷歌办公AI的感慨
2023年3月17日 最近这个科技圈的消息 有点爆炸的让人应接不暇了 各种大公司简直就是神仙打架 你从来没有见过这么密集的 这么高频的产品发布 昨天微软是发布了Office 365 Copilot 在里边提供了大量的AI的功能 然后谷歌呢也发布了这个Google Workspace AI 也是跟365 Cop…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
