基于DFA算法实现敏感词过滤
何为DFA
DFA,全称为Deterministic Finite Automaton,即确定有穷自动机、确定有限状态自动机或确定有限自动机
对于一个给定的属于该自动机的状态和一个属于该自动机字母表Σ的字符,它都能根据事先给定的转移函数转移到下一个状态(这个状态可以是先前那个状态)。
确定:状态以及引起状态转换的事件都是可确定的,不存在“意外”。
有穷:状态以及事件的数量都是可穷举的。
简单来说就是存储字符串每个字符,并判断到该字符为止是否属于敏感词
实现过程
存储:一次性的把所有的敏感词存储到了多个map中,就是下图表示这种结构
敏感词:冰毒、大麻、大坏蛋

检索的过程

执行上面的过程,就能匹配到内容中的敏感词了
代码实现
public static Map<String, Object> dictionaryMap = new HashMap<>();/*** 生成关键词字典库* @param words* @return*/public static void initMap(Collection<String> words) {if (words == null) {System.out.println("敏感词列表不能为空");return ;}// map初始长度words.size(),整个字典库的入口字数(小于words.size(),因为不同的词可能会有相同的首字)Map<String, Object> map = new HashMap<>(words.size());// 遍历过程中当前层次的数据Map<String, Object> curMap = null;Iterator<String> iterator = words.iterator();while (iterator.hasNext()) {String word = iterator.next();curMap = map;int len = word.length();for (int i =0; i < len; i++) {// 遍历每个词的字String key = String.valueOf(word.charAt(i));// 当前字在当前层是否存在, 不存在则新建, 当前层数据指向下一个节点, 继续判断是否存在数据Map<String, Object> wordMap = (Map<String, Object>) curMap.get(key);if (wordMap == null) {// 每个节点存在两个数据: 下一个节点和isEnd(是否结束标志)wordMap = new HashMap<>(2);wordMap.put("isEnd", "0");curMap.put(key, wordMap);}curMap = wordMap;// 如果当前字是词的最后一个字,则将isEnd标志置1if (i == len -1) {curMap.put("isEnd", "1");}}}dictionaryMap = map;}/*** 搜索文本中某个文字是否匹配关键词* @param text* @param beginIndex* @return*/private static int checkWord(String text, int beginIndex) {if (dictionaryMap == null) {throw new RuntimeException("字典不能为空");}boolean isEnd = false;int wordLength = 0;Map<String, Object> curMap = dictionaryMap;int len = text.length();// 从文本的第beginIndex开始匹配for (int i = beginIndex; i < len; i++) {String key = String.valueOf(text.charAt(i));// 获取当前key的下一个节点curMap = (Map<String, Object>) curMap.get(key);if (curMap == null) {break;} else {wordLength ++;if ("1".equals(curMap.get("isEnd"))) {isEnd = true;}}}if (!isEnd) {wordLength = 0;}return wordLength;}/*** 获取匹配的关键词和命中次数* @param text* @return*/public static Map<String, Integer> matchWords(String text) {Map<String, Integer> wordMap = new HashMap<>();int len = text.length();for (int i = 0; i < len; i++) {int wordLength = checkWord(text, i);if (wordLength > 0) {String word = text.substring(i, i + wordLength);// 添加关键词匹配次数if (wordMap.containsKey(word)) {wordMap.put(word, wordMap.get(word) + 1);} else {wordMap.put(word, 1);}i += wordLength - 1;}}return wordMap;}
验证DFA算法
public static void main(String[] args) {List<String> list = new ArrayList<>();list.add("坏蛋");list.add("混蛋");list.add("笨蛋");initMap(list);String content="我是一个坏人,但是不是坏蛋,也不是笨蛋";Map<String, Integer> map = matchWords(content);System.out.println(map);}

可以看到匹配结果是正确的(上面的代码可以直接封装成工具类使用)
// 封装后直接调用
// 初始化敏感词库SensitiveWordUtil.initMap(sensitiveList);// 查看内容中是否包含敏感词
Map<String, Integer> map = SensitiveWordUtil.matchWords(content);
if (map.size() > 0) {System.out.println("内容中存在敏感词");}
拓展延申
这个算法和之前遇到的字典树(Trie)算法很像,然后我就去搜索了一下两者的联系,发现DFA算法的核心就是构建一颗以敏感词为基础的多叉树,也就是字典树。字典树的每个节点代表一个状态,每条边代表一个字符,从一个状态到另一个状态的转移。当遍历完一个词后,将该词的最后一个字符的状态标记为结束(isEnd = true)
这样,我们可以通过这个DFA字典树,一个字符一个字符的检测输入的字符串,如果检测的字符在我们的敏感词树中,就进入命中的树,看下一个字符在不在树中,如果持续命中到最后一个字符,即idEnd = true,那么就是完全命中了,即存在敏感词
相关文章:
基于DFA算法实现敏感词过滤
何为DFA DFA,全称为Deterministic Finite Automaton,即确定有穷自动机、确定有限状态自动机或确定有限自动机 对于一个给定的属于该自动机的状态和一个属于该自动机字母表Σ的字符,它都能根据事先给定的转移函数转移到下一个状态࿰…...
模式识别与机器学习-无监督学习-聚类
无监督学习-聚类 监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案: 高斯混合模型(Gaussian Mixture Models,GMM)多维高斯分布的概率密度函数:高斯混合模型ÿ…...
Python中property特性属性是什么
在Java中,通常在类中定义的成员变量为私有变量,在类的实例中不能直接通过对象.属性直接操作,而是要通过getter和setter来操作私有变量。 而在Python中,因为有property这个概念,所以不需要写getter和setter一堆重复的代…...
vue3 全局配置Axios实例
目录 前言 配置Axios实例 页面使用 总结 前言 Axios 是一个基于 Promise 的 HTTP 客户端,用于浏览器和 Node.js 环境。它提供了一种简单、一致的 API 来处理HTTP请求,支持请求和响应的拦截、转换、取消请求等功能。关于它的作用: 发起 HTTP …...
EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.【EI级】 Matlab实现TCN-BiGRU-Mult…...
WeNet语音识别分词制作词云图
在线体验 ,点击识别语音需要等待一会,文件太大缓存会报错 介绍 本篇博客将介绍如何使用 Streamlit、jieba、wenet 和其他 Python 库,结合语音识别(WeNet)和词云生成,构建一个功能丰富的应用程序。我们将深入了解代码…...
Proxyman:现代本地Web调试代理工具
1. 简介 1.1 什么是Proxyman? Proxyman是一款专为macOS设计的现代本地Web调试代理工具,它不仅支持macOS平台,还能无缝地与iOS和Android设备进行集成。作为一个网络调试工具,Proxyman的设计旨在提供高性能、直观且功能丰富的解决…...
k8s中DaemonSet实战详解
一、DaemonSet介绍 DaemonSet 的主要作用,是在 Kubernetes 集群里,运行一个 Daemon Pod。DaemonSet 只管理 Pod 对象,然后通过 nodeAffinity 和 Toleration 这两个调度器参数的功能,保证了每个节点上有且只有一个 Pod。 二、Daem…...
信号处理设计模式
问题 如何编写信号安全的应用程序? Linux 应用程序安全性讨论 场景一:不需要处理信号 应用程序实现单一功能,不需要关注信号 如:数据处理程序,文件加密程序,科学计算程序 场景二:需要处理信…...
Linux权限的基本理解
一:🚩Linux中的用户 1.1🥦用户的分类 🌟在Linux中用户可以被分为两种用户: 超级用户(root):可以在Linux系统中做各种事情而不被约束普通用户:只能做有限的事情被权限约束 在实际操作时超级用户的命令提示符为#,普通用户的命令提示符为$,可…...
AI人工智能大模型讲师叶梓《基于人工智能的内容生成(AIGC)理论与实践》培训提纲
【课程简介】 本课程介绍了chatGPT相关模型的具体案例实践,通过实操更好的掌握chatGPT的概念与应用场景,可以作为chatGPT领域学习者的入门到进阶级课程。 【课程时长】 1天(6小时/天) 【课程对象】 理工科本科及以上࿰…...
nat地址转换
原理 将内网地址转换成外网地址 方式 掌握动态NAT的配置方法 掌握Easy IP的配置方法 掌握NAT Server的配置方法 实验 r1 r2 是内网 ar1 ip地址 ip add ip地址 掩码 ip route-static 0.0.0.0 0 192.168.1.254 默认网关 吓一跳网关 相等于设置了网关 ar2 …...
第12课 循环综合举例
文章目录 前言一、循环综合举例1. 质数判断问题2. 百人百砖问题3. 猴子吃桃问题4. 质因数分解问题5. 数字统计问题。 二、课后练习2. 末尾3位数问题3. 求自然常数e4. 数据统计问题5. 买苹果问题。6. 找5的倍数问题。 总结 前言 本课使用循环结构,介绍了以下问题的解…...
Tuxera NTFS for Mac2024免费Mac读写软件下载教程
在日常生活中,我们使用Mac时经常会遇到外部设备不能正常使用的情况,如:U盘、硬盘、软盘等等一系列存储设备,而这些设备的格式大多为NTFS,Mac系统对NTFS格式分区存在一定的兼容性问题,不能正常读写。 那么什…...
C++ 具名要求
此页面中列出的具名要求,是 C 标准的规范性文本中使用的具名要求,用于定义标准库的期待。 某些具名要求在 C20 中正在以概念语言特性进行形式化。在那之前,确保以满足这些要求的模板实参实例化标准库模板是程序员的重担。若不这么做…...
大创项目推荐 深度学习二维码识别
文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 🔥 优质竞赛项目系列,今天…...
C++初阶——基础知识(函数重载与引用)
目录 1.命名冲突 2.命名空间 3.缺省参数 4.函数重载 1.函数重载的特点包括: 2.函数重载的好处包括: 3.引用 引用的特点包括 引用的主要用途包括 引用和指针 引用 指针 类域 命名空间域 局部域 全局域 第一个关键字 命名冲突 同一个项目之间冲…...
车载电子电器架构 —— 电子电气系统开发角色定义
车载电子电器架构 —— 电子电气系统开发角色定义 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 注:本文12000字,深度思考者进!!! 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的…...
最新Redis7哨兵模式(保姆级教学)
一定一定要把云服务器的防火墙打开一定要!!!!!!!!!否则不成功!!!!!!!!&…...
Redis原理及常见问题
高性能之道 单线程模型基于内存操作epoll多路复用模型高效的数据存储结构redis的单线程指的是数据处理使用的单线程,实际上它主要包含 IO线程:处理网络消息收发主线程:处理数据读写操作,包括事务、Lua脚本等持久化线程:执行RDB或AOF时,使用持久化线程处理,避免主线程的阻…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
