当前位置: 首页 > news >正文

pytorch与cuda版本对应关系汇总

  1. pytorch与cuda版本关系
cuda版本支持pytorch版本
cuda10.21.5 ~ 1.12
cuda11.01.7 ~ 1.7.1
cuda11.11.8 ~ 1.10.1
cuda11.31.8.1 ~ 1.12.1
cuda11.61.12.0 ~ 1.13.1
cuda11.71.13.0 ~ 2.0.1
cuda11.82.0.0 ~ 2.1.1
cuda12.12.1.0 ~ 2.1.1
  1. cuda 与 cudnn关系
cuda版本支持cudnn版本
cuda10.2v7.6.5 ~ v8.7.0
cuda11.3v8.2.0 ~ v8.9.6
  1. pytorch 与 python关系
torchtorchvisionPython
main / nightlymain / nightly>=3.8, <=3.11
2.00.15>=3.8, <=3.11
1.130.14>=3.7.2, <=3.10
1.120.13>=3.7, <=3.10
1.110.12>=3.7, <=3.10
1.100.11>=3.6, <=3.9
1.90.10>=3.6, <=3.9
1.80.9>=3.6, <=3.9
1.70.8>=3.6, <=3.9
1.60.7>=3.6, <=3.8
1.50.6>=3.5, <=3.8
1.40.5==2.7, >=3.5, <=3.8
1.30.4.2 / 0.4.3==2.7, >=3.5, <=3.7
1.20.4.1==2.7, >=3.5, <=3.7
1.10.3==2.7, >=3.5, <=3.7
<=1.00.2==2.7, >=3.5, <=3.7

相关文章:

pytorch与cuda版本对应关系汇总

pytorch与cuda版本关系 cuda版本支持pytorch版本cuda10.21.5 ~ 1.12cuda11.01.7 ~ 1.7.1cuda11.11.8 ~ 1.10.1cuda11.31.8.1 ~ 1.12.1cuda11.61.12.0 ~ 1.13.1cuda11.71.13.0 ~ 2.0.1cuda11.82.0.0 ~ 2.1.1cuda12.12.1.0 ~ 2.1.1 cuda 与 cudnn关系 cuda版本支持cudnn版本cu…...

Linux系统下隧道代理HTTP

在Linux系统下配置隧道代理HTTP是一个涉及网络技术的话题&#xff0c;主要目的是在客户端和服务器之间建立一个安全的通信通道。下面将详细解释如何进行配置。 一、了解基本概念 在开始之前&#xff0c;需要了解几个关键概念&#xff1a;代理服务器、隧道代理和HTTP协议。代理…...

unity学习笔记----游戏练习03

一、修复植物种植的问题 1.当手上存在植物时&#xff0c;再次点击卡片上的植物就会在手上添加新的植物&#xff0c;需要修改成只有手上没有植物时才能再次获取到植物。需要修改AddPlant方法。 public bool AddPlant(PlantType plantType) { //防止手上出现多个植…...

VistualStudio查看类图UML

点击菜单栏中的工具–》获取工具和功能。 然后在资源管理器中对应的代码中鼠标右键选择查看类图 生成一个ClassDiagram.cd文件就是类图的文件了。 根据需要拖拽就可以生成类图了。...

elasticsearch系列九:异地容灾-CCR跨集群复制

概述 起初只在部分业务中采用es存储数据&#xff0c;在主中心搭建了个集群&#xff0c;随着es在我们系统中的地位越来越重要&#xff0c;数据也越来越多&#xff0c;针对它的安全性问题也越发重要&#xff0c;那如何对es做异地容灾呢&#xff1f; 今天咱们就一起看下官方提供的…...

基于Java网上点餐系统设计与实现

博主介绍&#xff1a; ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ &#x1f345; 文末获取源码联系 &#x1f345; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅 &#x1f447;&#x1f3fb; 不然下次找不到 Java项目精品实…...

公司电脑文件加密系统——防止内部核心文件数据 | 资料外泄,自动智能透明加密保护

一套从源头上保障企业电脑数据安全和电脑使用安全的加密软件。天锐绿盾加密软件包含了表格数据加密、图纸加密、文档文件加密、内网文件加密流转、密级管控、电脑离线管理、文件外发管理、灵活的审批流程、工作模式切换、服务器白名单等功能。天锐绿盾加密系统全面覆盖Mac、Win…...

计算机毕业设计------ssm茶叶溯源系统

项目介绍 茶叶溯源系统&#xff0c;分为前台与后台。普通用户可在前台通过18位的编码查询茶叶的出售历史。 后台分为两种角色&#xff0c;管理员与经销商&#xff1b; 管理员主要功能包括&#xff1a; 主界面&#xff1b; 管理员管理&#xff1a;管理员列表、添加管理员&am…...

【网络安全 | Misc】miss_01 太湖杯

解压时提示输入密码&#xff1a; 如果 frFlags 或 deFlags 不为0会导致zip的伪加密 将deFlags的值修改为0 将9改为0&#xff0c;另存为123.zip&#xff1a; 即可绕过加密&#xff1a; 得到一个zip一个docx&#xff0c;但zip需要密码&#xff1a; 因此看docx有无敏感信息&#x…...

【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法&#xff0c;是YOLO系列算法的最新版本。 YOLO&#xff08;You Only Look Once&#xff09;是一种实时物体检测算法&#xff0c;其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化&#xff0c;提高了检测速度和准确性。…...

《深入理解C++11:C++11新特性解析与应用》笔记六

第六章 提高性能及操作硬件的能力 6.1 常量表达式 6.1.1 运行时常量性与编译时常量性 大多数情况下&#xff0c;const描述的是运行时常量性&#xff0c;也即是运行时数据的不可更改性。但有时候我们需要的却是编译时的常量性&#xff0c;这是const关键字无法保证的。例如&am…...

C# 基于事件的观察者模式

观察者模式是一种软件设计模式&#xff0c;用于定义对象之间的一对多依赖关系&#xff0c;当一个对象的状态发生变化时&#xff0c;它的所有依赖者&#xff08;观察者&#xff09;都将得到通知并自动更新。这种模式通过解耦合主题和观察者来提高对象的灵活性。 定义 观察者模式…...

ARM CCA机密计算软件架构之软件堆栈概述

Arm CCA平台通过硬件添加和固件组件的混合方式实现,例如在处理元素(PEs)中的RME以及特定的固件组件,特别是监视器和领域管理监视器。本节介绍Arm CCA平台的软件堆栈。 软件堆栈概述 领域VM的执行旨在与Normal world(正常世界)隔离,领域VM由Normal world Host(正常世界…...

《Python机器学习原理与算法实现》学习笔记

以下为《Python机器学习原理与算法实现》&#xff08;杨维忠 张甜 著 2023年2月新书 清华大学出版社&#xff09;的学习笔记。 根据输入数据是否具有“响应变量”信息&#xff0c;机器学习被分为“监督式学习”和“非监督式学习”。 “监督式学习”即输入数据中即有X变量&…...

k8s集群通过helm部署skywalking

1、安装helm 下载脚本安装 ~# curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 ~# chmod 700 get_helm.sh ~# ./get_helm.sh或者下载包进行安装 ~# wget https://get.helm.sh/helm-canary-linux-amd64.tar.gz ~# mv helm …...

介绍一款PDF在线工具

PDF是我们日常工作中的一种常见格式&#xff0c;其处理也是我们工作的重要基础性环节&#xff0c;一款可靠的处理工具显得十分重要。 完全免费、易于使用、丰富的PDF处理工具&#xff0c;包括&#xff1a;合并、拆分、压缩、转换、旋转和解锁PDF文件&#xff0c;以及给PDF文件…...

docker学习——汇总版

历时一个月将docker系统的学习了一下&#xff0c;并且记录了详细的笔记和实践过程。 希望能对工作需要的小伙伴们有所帮助~ docker基础篇 docker学习&#xff08;一、docker与VM对比&#xff09; docker学习&#xff08;二、安装docker&#xff09; docker学习&#xff08;…...

百度沧海文件存储CFS推出新一代Namespace架构

随着移动互联网、物联网、AI 计算等技术和市场的迅速发展&#xff0c;数据规模指数级膨胀&#xff0c;对于分布式文件系统作为大规模数据场景的存储底座提出了更高的要求。已有分布式文件系统解决方案存在着短板&#xff0c;只能适应有限的场景&#xff1a; >> 新型分布式…...

16-网络安全框架及模型-BiBa完整性模型

目录 BiBa完整性模型 1 背景概述 2 模型原理 3 主要特性 4 优势和局限性 5 应用场景 BiBa完整性模型 1 背景概述 Biba完整性模型是用于保护数据完整性的模型&#xff0c;它的主要目标是确保数据的准确性和一致性&#xff0c;防止未授权的修改和破坏。在这个模型中&#…...

ssm基于冲突动态监测算法的健身房预约系统的设计与实现论文

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装健身房预约系统软件来发挥其高效地信息处理的作用&#xff…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...