当前位置: 首页 > news >正文

OpenCV实战 -- 维生素药片的检测记数

文章目录

  • 检测记数
    • 原图
    • 经过操作
    • 开始进行消除粘连性--形态学变换
    • 总结实现方法
      • 1. 读取图片:
      • 2. 形态学处理:
      • 3. 二值化:
      • 4. 提取轮廓:
      • 5. 轮廓筛选和计数:
    • 分水岭算法:
      • 逐行解释
      • 在基于距离变换的分水岭算法中,二值化操作是为了得到`sure_fg`(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

读取图片
形态学处理
二值化
提取轮廓
获取轮廓索引,并筛选所需要的轮廓
画出轮廓,显示计数

检测记数

原图-》灰度化-》阈值分割-》形态学变换-》距离变换-》轮廓查找
在这里插入图片描述

原图

在这里插入图片描述

import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()
print (len(contours))

在这里插入图片描述

经过操作

发现其具有粘连性,所以阈值分割、形态学变换等图像处理
在这里插入图片描述

开始进行消除粘连性–形态学变换

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image= cv.cvtColor(image, cv.COLOR_BGR2GRAY)
kernel = np.ones((16, 16), np.uint8)
gray_image=cv.morphologyEx(gray_image, cv.MORPH_OPEN, kernel)
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()print (len(contours))

在这里插入图片描述

总结实现方法

1. 读取图片:

import cv2# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
cv2.waitKey(0)

2. 形态学处理:

import cv2
import numpy as np# 形态学处理
kernel = np.ones((16, 16), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
cv2.waitKey(0)

3. 二值化:

import cv2# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)

4. 提取轮廓:

import cv2# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 在原图上绘制轮廓
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Contours", contour_image)
cv2.waitKey(0)

5. 轮廓筛选和计数:

import cv2# 遍历轮廓
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)cv2.imshow("Count Result", image)
cv2.waitKey(0)

分水岭算法:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

逐行解释

当然,让我们逐行解释上述代码:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
  • 导入OpenCV库和NumPy库。
  • 读取图片并显示原始图像。
# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
  • 定义一个3x3的矩形内核(kernel)。
  • 对原始图像进行形态学开运算,去除小的噪点和不重要的细节。
  • 显示形态学处理后的图像。
# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)
  • 将形态学处理后的图像转换为灰度图。
# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
  • 对灰度图进行自适应阈值二值化,使用OTSU算法。
  • 显示二值化后的图像。
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  • 寻找二值化后图像中的外部轮廓。
# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)
  • 初始化药片计数为0。
  • 遍历所有找到的轮廓。
    • 如果轮廓的面积小于500,则跳过。
    • 获取轮廓的位置信息(矩形边界框)。
    • 在原图上绘制矩形,标记检测到的药片。
    • 在矩形位置写上计数。
    • 计数加1。
  • 显示标记了计数的结果图像,并输出药片检测个数。
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 等待用户按下任意按键,然后关闭所有打开的窗口。

在基于距离变换的分水岭算法中,二值化操作是为了得到sure_fg(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

  1. 距离变换: 通过距离变换,我们得到了一个灰度图,其中像素值表示每个像素到最近的零像素点的距离。这个距离图范围是浮点数,通常需要进行归一化。

    dist_transform = cv2.distanceTransform(binary_image, cv2.DIST_L2, 3)
    
  2. 归一化: 将距离变换后的图像进行归一化,使其范围在0到1之间。

    normalized_distance = cv2.normalize(dist_transform, 0, 1, cv2.NORM_MINMAX)
    
  3. 再次二值化: 对归一化后的图像进行二值化,以获取肯定是前景的区域。这是通过设置一个阈值,将距离较大的区域认定为前景。

    _, sure_fg = cv2.threshold(normalized_distance, 0.4, 1, cv2.THRESH_BINARY)
    

这样,sure_fg 中的像素值为 1 的区域就被认为是明确的前景区域,而不是可能的边界区域。这种区域将被用作分水岭算法的种子点。

相关文章:

OpenCV实战 -- 维生素药片的检测记数

文章目录 检测记数原图经过操作开始进行消除粘连性--形态学变换总结实现方法1. 读取图片&#xff1a;2. 形态学处理&#xff1a;3. 二值化&#xff1a;4. 提取轮廓&#xff1a;5. 轮廓筛选和计数&#xff1a; 分水岭算法&#xff1a;逐行解释在基于距离变换的分水岭算法中&…...

【AI】注意力机制与深度学习模型

目录 一、注意力机制 二、了解发展历程 2.1 早期萌芽&#xff1a; 2.2 真正意义的注意力机制&#xff1a; 2.3 2015 年及以后&#xff1a; 2.4 自注意力与 Transformer&#xff1a; 2.5 BERT 与预训练模型&#xff1a; 三、基本框架 1. 打分函数&#xff08;Score Fun…...

HTML5和JS实现新年礼花效果

HTML5和JS实现新年礼花效果 2023兔年再见&#xff0c;2024龙年来临了&#xff01; 祝愿读者朋友们在2024年里&#xff0c;身体健康&#xff0c;心灵愉悦&#xff0c;梦想成真。 下面是用HTML5和JS实现新年礼花效果&#xff1a; 源码如下&#xff1a; <!DOCTYPE html>…...

【owt-server】一些构建项目梳理

【owt-server】清理日志&#xff1a;owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client...

Linux shell编程学习笔记38:history命令

目录 0 前言 1 history命令的功能、格式和退出状态1.1 history命令的功能1.2 history命令的格式1.3退出状态2 命令应用实例2.1 history&#xff1a;显示命令历史列表2.2 history -a&#xff1a;将当前会话的命令行历史追加到历史文件~/.bash_history中2.3 history -c&#xf…...

elasticsearch安装教程(超详细)

1.1 创建网络&#xff08;单点部署&#xff09; 因为我们还需要部署 kibana 容器&#xff0c;因此需要让 es 和 kibana 容器互联&#xff0c;所有先创建一个网络&#xff1a; docker network create es-net 1.2.加载镜像 采用的版本为 7.12.1 的 elasticsearch&#xff1b;…...

arkts中@Watch监听的使用

概述 Watch用于监听状态变量的变化&#xff0c;当状态变量变化时&#xff0c;Watch的回调方法将被调用。Watch在ArkUI框架内部判断数值有无更新使用的是严格相等&#xff08;&#xff09;&#xff0c;遵循严格相等规范。当在严格相等为false的情况下&#xff0c;就会触发Watch的…...

【Jmeter】Jmeter基础9-BeanShell介绍

3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中&#xff0c;除了配置元件&#xff0c;其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…...

详解数组的轮转

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…...

html 表格 笔记

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>第二个页面</title><meta name"language" content"cn"> </head> <body><h2 sytle"width:500px;…...

计算机网络【HTTP 面试题】

HTTP的请求报文结构和响应报文结构 HTTP请求报文主要由请求行、请求头、空行、请求正文&#xff08;Get请求没有请求正文&#xff09;4部分组成。 1、请求行 由三部分组成&#xff0c;分别为&#xff1a;请求方法、URL以及协议版本&#xff0c;之间由空格分隔&#xff1b;请…...

linux基于用户身份对资源访问进行控制的解析及过程

linux中用户分为三类 1.超级用户&#xff08;root&#xff09; 拥有至高无上的权限 2.普通用户 人为创建、权限小&#xff0c;权限受到控制 3.程序用户 运行程序的用户&#xff0c;不是给人使用的&#xff0c;给程序使用的&#xff0c;一般不给登录&#xff01; 组账…...

手动创建idea SpringBoot 项目

步骤一&#xff1a; 步骤二&#xff1a; 选择Spring initializer -> Project SDK 选择自己的JDK版本 ->Next 步骤三&#xff1a; Maven POM ->Next 步骤四&#xff1a; 根据JDK版本选择Spring Boot版本 11版本及以上JDK建议选用3.2版本&#xff0c;JDK为11版本…...

【Go语言入门:Go语言的数据结构】

文章目录 3.Go语言的数据结构&#xff1a;3.1. 指针3.2. struct&#xff08;结构体&#xff09;3.3. Map(映射,哈希&#xff09; 3.Go语言的数据结构&#xff1a; 简介&#xff1a; 在Go语言中&#xff0c;数据结构体可以分为四种类型&#xff1a;基础类型、聚合类型、引用类型…...

QT designer的ui文件转py文件之后,实现pycharm中运行以方便修改逻辑,即添加实时模板框架

为PyCharm中的实时模板&#xff0c;你需要遵循以下步骤&#xff1a; 打开PyCharm的设置: 选择 File > Settings&#xff08;在macOS上是 PyCharm > Preferences&#xff09;。 导航到实时模板: 在设置中找到 Editor > Live Templates。 添加新的模板组 (可选): 为了…...

什么是负载均衡?

负载均衡是指在计算机网络领域中&#xff0c;将客户端请求分配到多台服务器上以实现带宽资源共享、优化资源利用率和提高系统性能的技术。负载均衡可以帮助小云有效解决单个服务器容量不足或性能瓶颈的问题&#xff0c;小云通过平衡流量负载&#xff0c;使得多台服务器能够共同…...

Python和Java的优缺点

Python的优点&#xff1a; 简单易学&#xff1a;Python的语法简洁清晰&#xff0c;易于学习和理解。丰富的库和框架&#xff1a;Python拥有庞大的标准库和活跃的开源社区&#xff0c;可以快速使用各种功能强大的库和框架&#xff0c;比如NumPy、Pandas、Django等。可读性强&am…...

AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)

文章目录 AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)概述增加2个封装函数的AES库aes.haes.c在官方测试程序上改的测试程序(用来测试这2个封装函数)END AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密) 概述 在github山有个星数很高的AES的C库 tiny-AES-c …...

51和32单片机读取FSR薄膜压力传感器压力变化

文章目录 简介线性电压转换模块51单片机读取DO接线方式51代码实验效果 32单片机读取AO接线方式32代码实验效果 总结 简介 FSR薄膜压力传感器是可以将压力变化转换为电阻变化的一种传感器&#xff0c;单片机可以读取然后作为粗略测量压力&#xff08;仅提供压力变化&#xff0c;…...

【maven】pom.xml 文件详解

有关 maven 其他配置讲解参考 maven 配置文件 setting.xml 详解 pom.xml 文件是 Maven 项目的核心配置文件&#xff0c;其中包含了项目的元数据、构建配置、依赖管理等信息。以下是一个 pom.xml 文件的主要部分&#xff1a; <?xml version"1.0" encoding"U…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...