OpenCV实战 -- 维生素药片的检测记数
文章目录
- 检测记数
- 原图
- 经过操作
- 开始进行消除粘连性--形态学变换
- 总结实现方法
- 1. 读取图片:
- 2. 形态学处理:
- 3. 二值化:
- 4. 提取轮廓:
- 5. 轮廓筛选和计数:
- 分水岭算法:
- 逐行解释
- 在基于距离变换的分水岭算法中,二值化操作是为了得到`sure_fg`(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:
读取图片
形态学处理
二值化
提取轮廓
获取轮廓索引,并筛选所需要的轮廓
画出轮廓,显示计数
检测记数
原图-》灰度化-》阈值分割-》形态学变换-》距离变换-》轮廓查找
原图
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()
print (len(contours))
经过操作
发现其具有粘连性,所以阈值分割、形态学变换等图像处理
开始进行消除粘连性–形态学变换
import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image= cv.cvtColor(image, cv.COLOR_BGR2GRAY)
kernel = np.ones((16, 16), np.uint8)
gray_image=cv.morphologyEx(gray_image, cv.MORPH_OPEN, kernel)
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()print (len(contours))
总结实现方法
1. 读取图片:
import cv2# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
cv2.waitKey(0)
2. 形态学处理:
import cv2
import numpy as np# 形态学处理
kernel = np.ones((16, 16), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
cv2.waitKey(0)
3. 二值化:
import cv2# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)
4. 提取轮廓:
import cv2# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 在原图上绘制轮廓
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Contours", contour_image)
cv2.waitKey(0)
5. 轮廓筛选和计数:
import cv2# 遍历轮廓
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)cv2.imshow("Count Result", image)
cv2.waitKey(0)
分水岭算法:
import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)cv2.waitKey(0)
cv2.destroyAllWindows()
逐行解释
当然,让我们逐行解释上述代码:
import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
- 导入OpenCV库和NumPy库。
- 读取图片并显示原始图像。
# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
- 定义一个3x3的矩形内核(kernel)。
- 对原始图像进行形态学开运算,去除小的噪点和不重要的细节。
- 显示形态学处理后的图像。
# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)
- 将形态学处理后的图像转换为灰度图。
# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
- 对灰度图进行自适应阈值二值化,使用OTSU算法。
- 显示二值化后的图像。
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
- 寻找二值化后图像中的外部轮廓。
# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)
- 初始化药片计数为0。
- 遍历所有找到的轮廓。
- 如果轮廓的面积小于500,则跳过。
- 获取轮廓的位置信息(矩形边界框)。
- 在原图上绘制矩形,标记检测到的药片。
- 在矩形位置写上计数。
- 计数加1。
- 显示标记了计数的结果图像,并输出药片检测个数。
cv2.waitKey(0)
cv2.destroyAllWindows()
- 等待用户按下任意按键,然后关闭所有打开的窗口。
在基于距离变换的分水岭算法中,二值化操作是为了得到sure_fg
(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:
-
距离变换: 通过距离变换,我们得到了一个灰度图,其中像素值表示每个像素到最近的零像素点的距离。这个距离图范围是浮点数,通常需要进行归一化。
dist_transform = cv2.distanceTransform(binary_image, cv2.DIST_L2, 3)
-
归一化: 将距离变换后的图像进行归一化,使其范围在0到1之间。
normalized_distance = cv2.normalize(dist_transform, 0, 1, cv2.NORM_MINMAX)
-
再次二值化: 对归一化后的图像进行二值化,以获取肯定是前景的区域。这是通过设置一个阈值,将距离较大的区域认定为前景。
_, sure_fg = cv2.threshold(normalized_distance, 0.4, 1, cv2.THRESH_BINARY)
这样,sure_fg
中的像素值为 1 的区域就被认为是明确的前景区域,而不是可能的边界区域。这种区域将被用作分水岭算法的种子点。
相关文章:

OpenCV实战 -- 维生素药片的检测记数
文章目录 检测记数原图经过操作开始进行消除粘连性--形态学变换总结实现方法1. 读取图片:2. 形态学处理:3. 二值化:4. 提取轮廓:5. 轮廓筛选和计数: 分水岭算法:逐行解释在基于距离变换的分水岭算法中&…...
【AI】注意力机制与深度学习模型
目录 一、注意力机制 二、了解发展历程 2.1 早期萌芽: 2.2 真正意义的注意力机制: 2.3 2015 年及以后: 2.4 自注意力与 Transformer: 2.5 BERT 与预训练模型: 三、基本框架 1. 打分函数(Score Fun…...

HTML5和JS实现新年礼花效果
HTML5和JS实现新年礼花效果 2023兔年再见,2024龙年来临了! 祝愿读者朋友们在2024年里,身体健康,心灵愉悦,梦想成真。 下面是用HTML5和JS实现新年礼花效果: 源码如下: <!DOCTYPE html>…...

【owt-server】一些构建项目梳理
【owt-server】清理日志:owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client...

Linux shell编程学习笔记38:history命令
目录 0 前言 1 history命令的功能、格式和退出状态1.1 history命令的功能1.2 history命令的格式1.3退出状态2 命令应用实例2.1 history:显示命令历史列表2.2 history -a:将当前会话的命令行历史追加到历史文件~/.bash_history中2.3 history -c…...

elasticsearch安装教程(超详细)
1.1 创建网络(单点部署) 因为我们还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联,所有先创建一个网络: docker network create es-net 1.2.加载镜像 采用的版本为 7.12.1 的 elasticsearch;…...

arkts中@Watch监听的使用
概述 Watch用于监听状态变量的变化,当状态变量变化时,Watch的回调方法将被调用。Watch在ArkUI框架内部判断数值有无更新使用的是严格相等(),遵循严格相等规范。当在严格相等为false的情况下,就会触发Watch的…...

【Jmeter】Jmeter基础9-BeanShell介绍
3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中,除了配置元件,其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…...

详解数组的轮转
𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”。…...
html 表格 笔记
<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>第二个页面</title><meta name"language" content"cn"> </head> <body><h2 sytle"width:500px;…...

计算机网络【HTTP 面试题】
HTTP的请求报文结构和响应报文结构 HTTP请求报文主要由请求行、请求头、空行、请求正文(Get请求没有请求正文)4部分组成。 1、请求行 由三部分组成,分别为:请求方法、URL以及协议版本,之间由空格分隔;请…...

linux基于用户身份对资源访问进行控制的解析及过程
linux中用户分为三类 1.超级用户(root) 拥有至高无上的权限 2.普通用户 人为创建、权限小,权限受到控制 3.程序用户 运行程序的用户,不是给人使用的,给程序使用的,一般不给登录! 组账…...

手动创建idea SpringBoot 项目
步骤一: 步骤二: 选择Spring initializer -> Project SDK 选择自己的JDK版本 ->Next 步骤三: Maven POM ->Next 步骤四: 根据JDK版本选择Spring Boot版本 11版本及以上JDK建议选用3.2版本,JDK为11版本…...
【Go语言入门:Go语言的数据结构】
文章目录 3.Go语言的数据结构:3.1. 指针3.2. struct(结构体)3.3. Map(映射,哈希) 3.Go语言的数据结构: 简介: 在Go语言中,数据结构体可以分为四种类型:基础类型、聚合类型、引用类型…...
QT designer的ui文件转py文件之后,实现pycharm中运行以方便修改逻辑,即添加实时模板框架
为PyCharm中的实时模板,你需要遵循以下步骤: 打开PyCharm的设置: 选择 File > Settings(在macOS上是 PyCharm > Preferences)。 导航到实时模板: 在设置中找到 Editor > Live Templates。 添加新的模板组 (可选): 为了…...

什么是负载均衡?
负载均衡是指在计算机网络领域中,将客户端请求分配到多台服务器上以实现带宽资源共享、优化资源利用率和提高系统性能的技术。负载均衡可以帮助小云有效解决单个服务器容量不足或性能瓶颈的问题,小云通过平衡流量负载,使得多台服务器能够共同…...
Python和Java的优缺点
Python的优点: 简单易学:Python的语法简洁清晰,易于学习和理解。丰富的库和框架:Python拥有庞大的标准库和活跃的开源社区,可以快速使用各种功能强大的库和框架,比如NumPy、Pandas、Django等。可读性强&am…...
AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)
文章目录 AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)概述增加2个封装函数的AES库aes.haes.c在官方测试程序上改的测试程序(用来测试这2个封装函数)END AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密) 概述 在github山有个星数很高的AES的C库 tiny-AES-c …...

51和32单片机读取FSR薄膜压力传感器压力变化
文章目录 简介线性电压转换模块51单片机读取DO接线方式51代码实验效果 32单片机读取AO接线方式32代码实验效果 总结 简介 FSR薄膜压力传感器是可以将压力变化转换为电阻变化的一种传感器,单片机可以读取然后作为粗略测量压力(仅提供压力变化,…...
【maven】pom.xml 文件详解
有关 maven 其他配置讲解参考 maven 配置文件 setting.xml 详解 pom.xml 文件是 Maven 项目的核心配置文件,其中包含了项目的元数据、构建配置、依赖管理等信息。以下是一个 pom.xml 文件的主要部分: <?xml version"1.0" encoding"U…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...