OpenCV实战 -- 维生素药片的检测记数
文章目录
- 检测记数
- 原图
- 经过操作
- 开始进行消除粘连性--形态学变换
- 总结实现方法
- 1. 读取图片:
- 2. 形态学处理:
- 3. 二值化:
- 4. 提取轮廓:
- 5. 轮廓筛选和计数:
- 分水岭算法:
- 逐行解释
- 在基于距离变换的分水岭算法中,二值化操作是为了得到`sure_fg`(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:
读取图片
形态学处理
二值化
提取轮廓
获取轮廓索引,并筛选所需要的轮廓
画出轮廓,显示计数
检测记数
原图-》灰度化-》阈值分割-》形态学变换-》距离变换-》轮廓查找

原图

import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()
print (len(contours))

经过操作
发现其具有粘连性,所以阈值分割、形态学变换等图像处理

开始进行消除粘连性–形态学变换
import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image= cv.cvtColor(image, cv.COLOR_BGR2GRAY)
kernel = np.ones((16, 16), np.uint8)
gray_image=cv.morphologyEx(gray_image, cv.MORPH_OPEN, kernel)
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()print (len(contours))

总结实现方法
1. 读取图片:
import cv2# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
cv2.waitKey(0)
2. 形态学处理:
import cv2
import numpy as np# 形态学处理
kernel = np.ones((16, 16), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
cv2.waitKey(0)
3. 二值化:
import cv2# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)
4. 提取轮廓:
import cv2# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 在原图上绘制轮廓
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Contours", contour_image)
cv2.waitKey(0)
5. 轮廓筛选和计数:
import cv2# 遍历轮廓
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)cv2.imshow("Count Result", image)
cv2.waitKey(0)
分水岭算法:
import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)cv2.waitKey(0)
cv2.destroyAllWindows()

逐行解释
当然,让我们逐行解释上述代码:
import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
- 导入OpenCV库和NumPy库。
- 读取图片并显示原始图像。
# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
- 定义一个3x3的矩形内核(kernel)。
- 对原始图像进行形态学开运算,去除小的噪点和不重要的细节。
- 显示形态学处理后的图像。
# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)
- 将形态学处理后的图像转换为灰度图。
# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
- 对灰度图进行自适应阈值二值化,使用OTSU算法。
- 显示二值化后的图像。
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
- 寻找二值化后图像中的外部轮廓。
# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)
- 初始化药片计数为0。
- 遍历所有找到的轮廓。
- 如果轮廓的面积小于500,则跳过。
- 获取轮廓的位置信息(矩形边界框)。
- 在原图上绘制矩形,标记检测到的药片。
- 在矩形位置写上计数。
- 计数加1。
- 显示标记了计数的结果图像,并输出药片检测个数。
cv2.waitKey(0)
cv2.destroyAllWindows()
- 等待用户按下任意按键,然后关闭所有打开的窗口。
在基于距离变换的分水岭算法中,二值化操作是为了得到sure_fg(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:
-
距离变换: 通过距离变换,我们得到了一个灰度图,其中像素值表示每个像素到最近的零像素点的距离。这个距离图范围是浮点数,通常需要进行归一化。
dist_transform = cv2.distanceTransform(binary_image, cv2.DIST_L2, 3) -
归一化: 将距离变换后的图像进行归一化,使其范围在0到1之间。
normalized_distance = cv2.normalize(dist_transform, 0, 1, cv2.NORM_MINMAX) -
再次二值化: 对归一化后的图像进行二值化,以获取肯定是前景的区域。这是通过设置一个阈值,将距离较大的区域认定为前景。
_, sure_fg = cv2.threshold(normalized_distance, 0.4, 1, cv2.THRESH_BINARY)
这样,sure_fg 中的像素值为 1 的区域就被认为是明确的前景区域,而不是可能的边界区域。这种区域将被用作分水岭算法的种子点。
相关文章:
OpenCV实战 -- 维生素药片的检测记数
文章目录 检测记数原图经过操作开始进行消除粘连性--形态学变换总结实现方法1. 读取图片:2. 形态学处理:3. 二值化:4. 提取轮廓:5. 轮廓筛选和计数: 分水岭算法:逐行解释在基于距离变换的分水岭算法中&…...
【AI】注意力机制与深度学习模型
目录 一、注意力机制 二、了解发展历程 2.1 早期萌芽: 2.2 真正意义的注意力机制: 2.3 2015 年及以后: 2.4 自注意力与 Transformer: 2.5 BERT 与预训练模型: 三、基本框架 1. 打分函数(Score Fun…...
HTML5和JS实现新年礼花效果
HTML5和JS实现新年礼花效果 2023兔年再见,2024龙年来临了! 祝愿读者朋友们在2024年里,身体健康,心灵愉悦,梦想成真。 下面是用HTML5和JS实现新年礼花效果: 源码如下: <!DOCTYPE html>…...
【owt-server】一些构建项目梳理
【owt-server】清理日志:owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client...
Linux shell编程学习笔记38:history命令
目录 0 前言 1 history命令的功能、格式和退出状态1.1 history命令的功能1.2 history命令的格式1.3退出状态2 命令应用实例2.1 history:显示命令历史列表2.2 history -a:将当前会话的命令行历史追加到历史文件~/.bash_history中2.3 history -c…...
elasticsearch安装教程(超详细)
1.1 创建网络(单点部署) 因为我们还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联,所有先创建一个网络: docker network create es-net 1.2.加载镜像 采用的版本为 7.12.1 的 elasticsearch;…...
arkts中@Watch监听的使用
概述 Watch用于监听状态变量的变化,当状态变量变化时,Watch的回调方法将被调用。Watch在ArkUI框架内部判断数值有无更新使用的是严格相等(),遵循严格相等规范。当在严格相等为false的情况下,就会触发Watch的…...
【Jmeter】Jmeter基础9-BeanShell介绍
3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中,除了配置元件,其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…...
详解数组的轮转
𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”。…...
html 表格 笔记
<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>第二个页面</title><meta name"language" content"cn"> </head> <body><h2 sytle"width:500px;…...
计算机网络【HTTP 面试题】
HTTP的请求报文结构和响应报文结构 HTTP请求报文主要由请求行、请求头、空行、请求正文(Get请求没有请求正文)4部分组成。 1、请求行 由三部分组成,分别为:请求方法、URL以及协议版本,之间由空格分隔;请…...
linux基于用户身份对资源访问进行控制的解析及过程
linux中用户分为三类 1.超级用户(root) 拥有至高无上的权限 2.普通用户 人为创建、权限小,权限受到控制 3.程序用户 运行程序的用户,不是给人使用的,给程序使用的,一般不给登录! 组账…...
手动创建idea SpringBoot 项目
步骤一: 步骤二: 选择Spring initializer -> Project SDK 选择自己的JDK版本 ->Next 步骤三: Maven POM ->Next 步骤四: 根据JDK版本选择Spring Boot版本 11版本及以上JDK建议选用3.2版本,JDK为11版本…...
【Go语言入门:Go语言的数据结构】
文章目录 3.Go语言的数据结构:3.1. 指针3.2. struct(结构体)3.3. Map(映射,哈希) 3.Go语言的数据结构: 简介: 在Go语言中,数据结构体可以分为四种类型:基础类型、聚合类型、引用类型…...
QT designer的ui文件转py文件之后,实现pycharm中运行以方便修改逻辑,即添加实时模板框架
为PyCharm中的实时模板,你需要遵循以下步骤: 打开PyCharm的设置: 选择 File > Settings(在macOS上是 PyCharm > Preferences)。 导航到实时模板: 在设置中找到 Editor > Live Templates。 添加新的模板组 (可选): 为了…...
什么是负载均衡?
负载均衡是指在计算机网络领域中,将客户端请求分配到多台服务器上以实现带宽资源共享、优化资源利用率和提高系统性能的技术。负载均衡可以帮助小云有效解决单个服务器容量不足或性能瓶颈的问题,小云通过平衡流量负载,使得多台服务器能够共同…...
Python和Java的优缺点
Python的优点: 简单易学:Python的语法简洁清晰,易于学习和理解。丰富的库和框架:Python拥有庞大的标准库和活跃的开源社区,可以快速使用各种功能强大的库和框架,比如NumPy、Pandas、Django等。可读性强&am…...
AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)
文章目录 AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)概述增加2个封装函数的AES库aes.haes.c在官方测试程序上改的测试程序(用来测试这2个封装函数)END AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密) 概述 在github山有个星数很高的AES的C库 tiny-AES-c …...
51和32单片机读取FSR薄膜压力传感器压力变化
文章目录 简介线性电压转换模块51单片机读取DO接线方式51代码实验效果 32单片机读取AO接线方式32代码实验效果 总结 简介 FSR薄膜压力传感器是可以将压力变化转换为电阻变化的一种传感器,单片机可以读取然后作为粗略测量压力(仅提供压力变化,…...
【maven】pom.xml 文件详解
有关 maven 其他配置讲解参考 maven 配置文件 setting.xml 详解 pom.xml 文件是 Maven 项目的核心配置文件,其中包含了项目的元数据、构建配置、依赖管理等信息。以下是一个 pom.xml 文件的主要部分: <?xml version"1.0" encoding"U…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
