当前位置: 首页 > news >正文

【强化学习】SARAS代码实现

前言

SARAS,假设环境状态和动作状态都是离散的。利用动作价值矩阵来进行行为的预测。其主要就是利用时序差分的思想,对动作价值矩阵进行更新。

代码实现

import gymnasium as gym
import numpy as npclass sarsa():def __init__(self, states_n, action_n, greedy_e=0.1):self.Q = np.zeros((states_n, action_n)) #动作价值矩阵self.greedy_e = greedy_e #随机探索的概率self.states_n = states_n #环境状态个数self.action_n = action_n #行动状态个数self.gamma=0.9 #价值衰减值self.lr=0.1 #学习率def predict(self, states):action_list=self.Q[states]#先拿出对应的行#再取出对应价值最大的行为,如果有重复则在重复项中随机选取,返回索引action=np.random.choice(np.flatnonzero(action_list==action_list.max()))return actiondef act(self, states):'''由对应环境产生对应的行动@param states: 当前环境@return: 行动动作'''if np.random.uniform() < self.greedy_e:#是否采取随即探索action = np.random.choice(np.arange(self.action_n))#随机探索else:action = self.predict(states) # 根据行动价值矩阵进行预测return actiondef learning(self,state,action,reward,next_state,next_action,does):'''学习更新参数@param state: 环境状态@param action: 采取的行动@param reward: 回报@param next_state: 采取行动后的下一个环境状态@param next_action: 下一个环境状态对应的行为@param does: 游戏是否结束@return:'''current_q=self.Q[state,action] #取出对应的行动价值if does: #查看是否已经完成游戏,完成则直接将当前回报作为下一个行动价值next_q=rewardelse:# 计算当前回报和下一个环境状态和下一个行动对应的价值,加和next_q=reward+self.gamma*self.Q[next_state,next_action]self.Q[state,action]+=self.lr*(next_q-current_q) #时序差分,更新行动价值矩阵def train():env = gym.make("FrozenLake-v1", render_mode="human")#初始化游戏环境obs,info=env.reset()#重置位置agent=sarsa(env.observation_space.n,env.action_space.n)#初始化模型action = agent.act(obs)#预测行为num=0while True:num+=1# 由行为产生回报和下一个环境状态next_obs, reward, done, truncated, info = env.step(action)#预测下一个动作next_action=agent.act(obs)# 更新参数agent.learning(obs,action,reward,next_obs,next_action,done)obs=next_obsaction=next_action# 判断游戏是否结束或者中断,是则重置游戏if done or truncated:obs, info = env.reset()if num % 100 == 0 :env.close()if __name__ == '__main__':train()

相关文章:

【强化学习】SARAS代码实现

前言 SARAS&#xff0c;假设环境状态和动作状态都是离散的。利用动作价值矩阵来进行行为的预测。其主要就是利用时序差分的思想&#xff0c;对动作价值矩阵进行更新。 代码实现 import gymnasium as gym import numpy as npclass sarsa():def __init__(self, states_n, acti…...

P1019 [NOIP2000 提高组] 单词接龙 刷题笔记

P1019 [NOIP2000 提高组] 单词接龙 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路来自 大佬 Chardo 的个人中心 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 匹配 &#xff1a; 将 第一个字符串末尾 和第二个字符串第一个开始匹配 如果 j<i这段走完了 flag还没…...

如何实现WinApp的UI自动化测试?

WinApp&#xff08;WindowsAPP&#xff09;是运行在Windows操作系统上的应用程序&#xff0c;通常会提供一个可视的界面&#xff0c;用于和用户交互。例如运行在Windows系统上的Microsoft Office、PyCharm、Visual Studio Code、Chrome&#xff0c;都属于WinApp。常见的WinApp&…...

chrome扩展程序开发之在目标页面运行自己的JS

原文地址&#xff1a;https://qdgithub.com/home/index/article/aid/247.html chrome 插件开发的入门介绍&#xff0c;实现利用 chrome 扩展实现在目标网页运行我们的 js 的功能。关于 chrome 扩展的详细内容&#xff0c;可以通过官网了解。 开发工具很简单&#xff0c;记事本…...

NLP项目之语种识别

目录 1. 代码及解读2. 知识点n-grams仅保留最常见的1000个n-grams。意思是n1000 ? 1. 代码及解读 in_f open(data.csv) lines in_f.readlines() in_f.close() dataset [(line.strip()[:-3], line.strip()[-2:]) for line in lines] print(dataset[:5])[(1 december wereld…...

Linux lpr命令教程:如何使用lpr命令打印文件(附案例详解和注意事项)

Linux lpr命令介绍 lpr命令在Unix-like操作系统中用于提交打印任务。如果在命令行中指定了文件名&#xff0c;那么这些文件将被发送到指定的打印机&#xff08;如果没有指定目的地&#xff0c;则发送到默认目的地&#xff09;。如果命令行中没有列出文件&#xff0c;lpr将从标…...

浅谈C语言inline关键字

对于C开发者来说&#xff0c;inline是个再熟悉不过的关键字&#xff0c;因为默认的成员函数都是inline&#xff0c;也是常规高校教材中宣扬C的“优势”之一。 但是C语言其实也是支持inline关键字的&#xff0c;而且是很早期的gcc就支持了该关键字。在Linux0.12版本内核代码中也…...

Flink1.17实战教程(第六篇:容错机制)

系列文章目录 Flink1.17实战教程&#xff08;第一篇&#xff1a;概念、部署、架构&#xff09; Flink1.17实战教程&#xff08;第二篇&#xff1a;DataStream API&#xff09; Flink1.17实战教程&#xff08;第三篇&#xff1a;时间和窗口&#xff09; Flink1.17实战教程&…...

OpenCV实战 -- 维生素药片的检测记数

文章目录 检测记数原图经过操作开始进行消除粘连性--形态学变换总结实现方法1. 读取图片&#xff1a;2. 形态学处理&#xff1a;3. 二值化&#xff1a;4. 提取轮廓&#xff1a;5. 轮廓筛选和计数&#xff1a; 分水岭算法&#xff1a;逐行解释在基于距离变换的分水岭算法中&…...

【AI】注意力机制与深度学习模型

目录 一、注意力机制 二、了解发展历程 2.1 早期萌芽&#xff1a; 2.2 真正意义的注意力机制&#xff1a; 2.3 2015 年及以后&#xff1a; 2.4 自注意力与 Transformer&#xff1a; 2.5 BERT 与预训练模型&#xff1a; 三、基本框架 1. 打分函数&#xff08;Score Fun…...

HTML5和JS实现新年礼花效果

HTML5和JS实现新年礼花效果 2023兔年再见&#xff0c;2024龙年来临了&#xff01; 祝愿读者朋友们在2024年里&#xff0c;身体健康&#xff0c;心灵愉悦&#xff0c;梦想成真。 下面是用HTML5和JS实现新年礼花效果&#xff1a; 源码如下&#xff1a; <!DOCTYPE html>…...

【owt-server】一些构建项目梳理

【owt-server】清理日志&#xff1a;owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client...

Linux shell编程学习笔记38:history命令

目录 0 前言 1 history命令的功能、格式和退出状态1.1 history命令的功能1.2 history命令的格式1.3退出状态2 命令应用实例2.1 history&#xff1a;显示命令历史列表2.2 history -a&#xff1a;将当前会话的命令行历史追加到历史文件~/.bash_history中2.3 history -c&#xf…...

elasticsearch安装教程(超详细)

1.1 创建网络&#xff08;单点部署&#xff09; 因为我们还需要部署 kibana 容器&#xff0c;因此需要让 es 和 kibana 容器互联&#xff0c;所有先创建一个网络&#xff1a; docker network create es-net 1.2.加载镜像 采用的版本为 7.12.1 的 elasticsearch&#xff1b;…...

arkts中@Watch监听的使用

概述 Watch用于监听状态变量的变化&#xff0c;当状态变量变化时&#xff0c;Watch的回调方法将被调用。Watch在ArkUI框架内部判断数值有无更新使用的是严格相等&#xff08;&#xff09;&#xff0c;遵循严格相等规范。当在严格相等为false的情况下&#xff0c;就会触发Watch的…...

【Jmeter】Jmeter基础9-BeanShell介绍

3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中&#xff0c;除了配置元件&#xff0c;其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…...

详解数组的轮转

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”。…...

html 表格 笔记

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>第二个页面</title><meta name"language" content"cn"> </head> <body><h2 sytle"width:500px;…...

计算机网络【HTTP 面试题】

HTTP的请求报文结构和响应报文结构 HTTP请求报文主要由请求行、请求头、空行、请求正文&#xff08;Get请求没有请求正文&#xff09;4部分组成。 1、请求行 由三部分组成&#xff0c;分别为&#xff1a;请求方法、URL以及协议版本&#xff0c;之间由空格分隔&#xff1b;请…...

linux基于用户身份对资源访问进行控制的解析及过程

linux中用户分为三类 1.超级用户&#xff08;root&#xff09; 拥有至高无上的权限 2.普通用户 人为创建、权限小&#xff0c;权限受到控制 3.程序用户 运行程序的用户&#xff0c;不是给人使用的&#xff0c;给程序使用的&#xff0c;一般不给登录&#xff01; 组账…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...