【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec
【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec
- 1. 词向量模型Word2Vec)
- 1. 如何度量这个单词的?
- 2.词向量是什么样子?
- 3.词向量对应的热力图:
- 4.词向量模型的输入与输出
- 2.如何构建训练数据
- 2.1 构建训练数据
- 2.2 不同模型对比(传入中间词预测上下文,传入上下文,预测中间词汇)
- 3.如何训练
- 3.1 如何设计驯联网络
- 3.2 改进方案:加入一些负样本(负采样模型)
- 3.3 词向量训练过程
1. 词向量模型Word2Vec)
1. 如何度量这个单词的?

2.词向量是什么样子?

3.词向量对应的热力图:


4.词向量模型的输入与输出


2.如何构建训练数据
2.1 构建训练数据
类似wiki与合乎说话逻辑的文本均可以作为训练数据



2.2 不同模型对比(传入中间词预测上下文,传入上下文,预测中间词汇)
CBOW:


Skip-gram模型所需训练数据集 :


3.如何训练
3.1 如何设计驯联网络
如果一个语料库稍微大一些,可能的结果简直太多了,最后一层相当于softmax,计算起来十分耗时,有什么办法来解决嘛?

初始方案:输入两个单词,看他们是不是前后对应的输入和输出,也就相当于一个二分类任务,但是这样做之后


出发点非常好,但是此时训练集构建出来的标签全为1,无法进行较好的训练
3.2 改进方案:加入一些负样本(负采样模型)

3.3 词向量训练过程
1.初始化词向量矩阵


2.通过神经网络返向传播来计算更新,此时不光更新权重参数矩阵W,也会更新输入数据

相关文章:
【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec
【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec 1. 词向量模型Word2Vec)1. 如何度量这个单词的?2.词向量是什么样子?3.词向量对应的热力图:4.词向量模型的输入与输出,其实…...
用Xshell连接虚拟机的Ubuntu20.04系统记录。虚拟机Ubuntu无法上网。本机能ping通虚拟机,反之不能。互ping不通
先别急着操作,看完再试。 如果是:本机能ping通虚拟机,反之不能。慢慢看到第8条。 如果是:虚拟机不能上网(互ping不通),往下一直看。 系统是刚装的,安装步骤:VMware虚拟机…...
人机对话--关于意识机器
人机对话–关于意识机器 这段内容是我和《通义千问》的对话。这本身展示的是人工智能的效果,同时这里面的内容也有人工智能相关,与各位分享。 我:阿尼尔赛斯 《意识机器》这本书写的是什么? 通义千问: 阿尼尔赛斯教…...
八股文打卡day16——计算机网络(16)
面试题:TCP连接是如何确保可靠性的? 我的回答: 1.数据分块控制。应用数据被分成被认为最适合传输的数据块大小,再发送到传输层,数据块被称为数据报文段或数据段。 2.序列号和确认应答。TCP为每一个数据包分配了一个序…...
Java Object浅克隆深克隆
对象克隆 把A对象的属性值完全拷贝给B对象,也叫对象拷贝,对象复制。 实现Cloneable接口,表示当前类的对象就可以被克隆,反之,表示当前类的对象就不能克隆。 如果一个接口里面没有抽象方法,表示当前的接口…...
概率的 50 个具有挑战性的问题 [8/50]:完美的桥牌
一、说明 我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇…...
自动驾驶学习笔记(二十四)——车辆控制开发
#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo开放平台9.0专项技术公开课》免费报名—>传送门 文章目录 前言 控制算法 控制标定 控制协议…...
【起草】【第十二章】定制ChatGPT数字亲人
身为普普通通的我们,不知道亲人们在哪一天就要离开这个世界 ? 作为普普通通的程序员,我们可以为我们的亲人做点什么 ? 让他们以数字资产形式留在人世间 ? 对话|6岁女孩病逝捐器官,妈妈:她去…...
MySQL数据库索引
索引的定义 索引是一个排序的列表,包含索引字段的值和其对应的行记录的数据所在的物理地址 索引的作用 加快表的查询速度,还可以对字段排序 索引的副作用 会额外占用磁盘空间;更新包含索引的表会花费更多的时间,效率会更慢 …...
【LLM 】7个基本的NLP模型,为ML应用程序赋能
在上一篇文章中,我们已经解释了什么是NLP及其在现实世界中的应用。在这篇文章中,我们将继续介绍NLP应用程序中使用的一些主要深度学习模型。 BERT 来自变压器的双向编码器表示(BERT)由Jacob Devlin在2018年的论文《BERT:用于语言…...
数字人私人定制
数字人是什么? 在回答这个问题之前,我们先回答另一个问题,人如何与人工智能交流?目前可以通过文字、语音、电脑屏幕、手机屏幕、平板、虚拟现实设备等和人工智能交流,为了得到更好的交流体验,人工智能必然…...
CollectionUtils
使用 CollectionUtils 类的常用方法 在Java开发中,我们经常需要对集合进行各种操作,而Apache Commons Collections库提供了一个方便的工具类 CollectionUtils,其中包含了许多实用的方法。在这篇博客中,我们将深入了解一些常用的方…...
很想写一个框架,比如,spring
很想写一个框架,比如,spring。 原理很清楚,源码也很熟悉。 可惜力不从心,是不是可以找几个小弟一起做。...
Java集合/泛型篇----第五篇
系列文章目录 文章目录 系列文章目录前言一、说说LinkHashSet( HashSet+LinkedHashMap)二、HashMap(数组+链表+红黑树)三、说说ConcurrentHashMap前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通…...
ACES 增强版不丹水稻作物地图(2016-2022 年)
ACES 增强版不丹水稻作物地图(2016-2022 年) 用于改善粮食安全决策的 2016-2022 年年度作物类型稻米地图仍然是不丹的一项挑战。这些地图是与不丹农业部和 SERVIR 合作开发的。通过专注于发展不丹的科学、技术、工程和数学 (STEM),我们共同开…...
【Spark精讲】一文讲透Spark宽窄依赖的区别
宽依赖窄依赖的区别 窄依赖:RDD 之间分区是一一对应的宽依赖:发生shuffle,多对多的关系 宽依赖是子RDD的一个分区依赖了父RDD的多个分区父RDD的一个分区的数据,分别流入到子RDD的不同分区特例:cartesian算子对应的Car…...
nacos2.3.0配置中心问题处理
问题:Error to process server push response: {"headers":{},"abilityTable":{"supportPersistentInstanceByGrpc":true},"module":"internal"} 处理办法: 将pom.xml中 <!-- nacos服务注册/发…...
Apollo自动驾驶系统:实现城市可持续交通的迈向
前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 ChatGPT体验地址 文章目录 前言引言:1. 什么是微服务架构?2. 微服务架构的组成要素3. 微服务架构的挑战和解决方案4. 微服务架构的可扩展性和弹性 第二部分&#x…...
【WPF.NET开发】附加事件
本文内容 先决条件附加事件语法WPF 如何实现附加事件附加事件方案处理附加事件定义自定义附加事件引发 WPF 附加事件 Extensible Application Markup Language (XAML) 定义了一种语言组件和称为附加事件的事件类型。 附加事件可用于在非元素类中定义新的 路由事件,…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
