当前位置: 首页 > news >正文

【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec

【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec

      • 1. 词向量模型Word2Vec)
        • 1. 如何度量这个单词的?
        • 2.词向量是什么样子?
        • 3.词向量对应的热力图:
        • 4.词向量模型的输入与输出![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/5ab5dc810a724ae883574a8bc58aeff8.png)
      • 2.如何构建训练数据
        • 2.1 构建训练数据
        • 2.2 不同模型对比(传入中间词预测上下文,传入上下文,预测中间词汇)
      • 3.如何训练
        • 3.1 如何设计驯联网络
        • 3.2 改进方案:加入一些负样本(负采样模型)
        • 3.3 词向量训练过程

1. 词向量模型Word2Vec)

1. 如何度量这个单词的?

在这里插入图片描述

2.词向量是什么样子?

在这里插入图片描述

3.词向量对应的热力图:

在这里插入图片描述
在这里插入图片描述

4.词向量模型的输入与输出在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.如何构建训练数据

2.1 构建训练数据

类似wiki与合乎说话逻辑的文本均可以作为训练数据
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 不同模型对比(传入中间词预测上下文,传入上下文,预测中间词汇)

CBOW:

在这里插入图片描述
在这里插入图片描述
Skip-gram模型所需训练数据集 :
在这里插入图片描述
在这里插入图片描述

3.如何训练

3.1 如何设计驯联网络

如果一个语料库稍微大一些,可能的结果简直太多了,最后一层相当于softmax,计算起来十分耗时,有什么办法来解决嘛?
在这里插入图片描述
初始方案:输入两个单词,看他们是不是前后对应的输入和输出,也就相当于一个二分类任务,但是这样做之后

在这里插入图片描述
在这里插入图片描述
出发点非常好,但是此时训练集构建出来的标签全为1,无法进行较好的训练

3.2 改进方案:加入一些负样本(负采样模型)

在这里插入图片描述

3.3 词向量训练过程

1.初始化词向量矩阵
在这里插入图片描述
在这里插入图片描述
2.通过神经网络返向传播来计算更新,此时不光更新权重参数矩阵W,也会更新输入数据
在这里插入图片描述

相关文章:

【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec

【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec 1. 词向量模型Word2Vec)1. 如何度量这个单词的?2.词向量是什么样子?3.词向量对应的热力图:4.词向量模型的输入与输出![在这里插入图片描述](https://img-blog.csdni…...

【Kotlin 】协程

Kotlin协程 背景定义实践GlobalScope.launchrunBlocking业务实践 背景 在项目实践过程中,笔者发现很多异步或者耗时的操作,都使用了Kotlin中的协程,所以特地研究了一番。 定义 关于协程(Coroutine),其实…...

用Xshell连接虚拟机的Ubuntu20.04系统记录。虚拟机Ubuntu无法上网。本机能ping通虚拟机,反之不能。互ping不通

先别急着操作,看完再试。 如果是:本机能ping通虚拟机,反之不能。慢慢看到第8条。 如果是:虚拟机不能上网(互ping不通),往下一直看。 系统是刚装的,安装步骤:VMware虚拟机…...

人机对话--关于意识机器

人机对话–关于意识机器 这段内容是我和《通义千问》的对话。这本身展示的是人工智能的效果,同时这里面的内容也有人工智能相关,与各位分享。 我:阿尼尔赛斯 《意识机器》这本书写的是什么? 通义千问: 阿尼尔赛斯教…...

八股文打卡day16——计算机网络(16)

面试题:TCP连接是如何确保可靠性的? 我的回答: 1.数据分块控制。应用数据被分成被认为最适合传输的数据块大小,再发送到传输层,数据块被称为数据报文段或数据段。 2.序列号和确认应答。TCP为每一个数据包分配了一个序…...

Java Object浅克隆深克隆

对象克隆 把A对象的属性值完全拷贝给B对象,也叫对象拷贝,对象复制。 实现Cloneable接口,表示当前类的对象就可以被克隆,反之,表示当前类的对象就不能克隆。 如果一个接口里面没有抽象方法,表示当前的接口…...

概率的 50 个具有挑战性的问题 [8/50]:完美的桥牌

一、说明 我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇…...

自动驾驶学习笔记(二十四)——车辆控制开发

#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo开放平台9.0专项技术公开课》免费报名—>传送门 文章目录 前言 控制算法 控制标定 控制协议…...

【起草】【第十二章】定制ChatGPT数字亲人

身为普普通通的我们,不知道亲人们在哪一天就要离开这个世界 ? 作为普普通通的程序员,我们可以为我们的亲人做点什么 ? 让他们以数字资产形式留在人世间 ? 对话|6岁女孩病逝捐器官,妈妈:她去…...

MySQL数据库索引

索引的定义 索引是一个排序的列表,包含索引字段的值和其对应的行记录的数据所在的物理地址 索引的作用 加快表的查询速度,还可以对字段排序 索引的副作用 会额外占用磁盘空间;更新包含索引的表会花费更多的时间,效率会更慢 …...

【LLM 】7个基本的NLP模型,为ML应用程序赋能

在上一篇文章中,我们已经解释了什么是NLP及其在现实世界中的应用。在这篇文章中,我们将继续介绍NLP应用程序中使用的一些主要深度学习模型。 BERT 来自变压器的双向编码器表示(BERT)由Jacob Devlin在2018年的论文《BERT:用于语言…...

数字人私人定制

数字人是什么? 在回答这个问题之前,我们先回答另一个问题,人如何与人工智能交流?目前可以通过文字、语音、电脑屏幕、手机屏幕、平板、虚拟现实设备等和人工智能交流,为了得到更好的交流体验,人工智能必然…...

CollectionUtils

使用 CollectionUtils 类的常用方法 在Java开发中,我们经常需要对集合进行各种操作,而Apache Commons Collections库提供了一个方便的工具类 CollectionUtils,其中包含了许多实用的方法。在这篇博客中,我们将深入了解一些常用的方…...

很想写一个框架,比如,spring

很想写一个框架,比如,spring。 原理很清楚,源码也很熟悉。 可惜力不从心,是不是可以找几个小弟一起做。...

Java集合/泛型篇----第五篇

系列文章目录 文章目录 系列文章目录前言一、说说LinkHashSet( HashSet+LinkedHashMap)二、HashMap(数组+链表+红黑树)三、说说ConcurrentHashMap前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通…...

ACES 增强版不丹水稻作物地图(2016-2022 年)

ACES 增强版不丹水稻作物地图(2016-2022 年) 用于改善粮食安全决策的 2016-2022 年年度作物类型稻米地图仍然是不丹的一项挑战。这些地图是与不丹农业部和 SERVIR 合作开发的。通过专注于发展不丹的科学、技术、工程和数学 (STEM),我们共同开…...

【Spark精讲】一文讲透Spark宽窄依赖的区别

宽依赖窄依赖的区别 窄依赖:RDD 之间分区是一一对应的宽依赖:发生shuffle,多对多的关系 宽依赖是子RDD的一个分区依赖了父RDD的多个分区父RDD的一个分区的数据,分别流入到子RDD的不同分区特例:cartesian算子对应的Car…...

nacos2.3.0配置中心问题处理

问题&#xff1a;Error to process server push response: {"headers":{},"abilityTable":{"supportPersistentInstanceByGrpc":true},"module":"internal"} 处理办法&#xff1a; 将pom.xml中 <!-- nacos服务注册/发…...

Apollo自动驾驶系统:实现城市可持续交通的迈向

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 ChatGPT体验地址 文章目录 前言引言&#xff1a;1. 什么是微服务架构&#xff1f;2. 微服务架构的组成要素3. 微服务架构的挑战和解决方案4. 微服务架构的可扩展性和弹性 第二部分&#x…...

【WPF.NET开发】附加事件

本文内容 先决条件附加事件语法WPF 如何实现附加事件附加事件方案处理附加事件定义自定义附加事件引发 WPF 附加事件 Extensible Application Markup Language (XAML) 定义了一种语言组件和称为附加事件的事件类型。 附加事件可用于在非元素类中定义新的 路由事件&#xff0c…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

Java多线程实现之Runnable接口深度解析

Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

核心速览 研究背景 ​​研究问题​​&#xff1a;这篇文章要解决的问题是当前大型语言模型&#xff08;LLMs&#xff09;在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色&#xff0c;但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成&#xff08;RA…...