当前位置: 首页 > news >正文

[C#]OpenCvSharp结合yolov8-face实现L2CS-Net眼睛注视方向估计或者人脸朝向估计

源码地址:

github地址:https://github.com/Ahmednull/L2CS-Net

L2CS-Net介绍:

眼睛注视(eye gaze) 是在各种应用中使用的基本线索之一。
它表示用户在人机交互和开放对话系统中的参与程度。此外,它还被用于增强现实,用于预测用户的注意力,从而提高设备的感知能力,降低功耗。
因此,研究人员开发了多种方法和技术来准确估计人类的凝视。这些方法分为两类: 基于模型的方法和基于外观的方法。
基于模型的方法通常需要专用硬件,这使得它们难以在不受约束的环境(unconstrained environment)中使用。
基于外观的方法将人类的视线直接从廉价的现成相机拍摄的图像中还原出来,使它们很容易在不受约束的设置下在不同的位置生成。
目前,基于CNN的方法是基于外观的方法是最常用的凝视估计方法,因为它提供了更好的凝视性能。
大部分的相关工作专注于开发新颖的基于CNN的网络,主要由流行的骨干(如VGG, ResNet-18 , ResNet-50等) 组成,来提取凝视特征,最终输出凝视方向。
这些网络的输入可以是单个流 (例如:如面部或眼睛图像)或多个流(如面部和眼睛图像)。
用于注视估计任务的最常见的损失函数是均方损失或L2损失。
尽管基于CNN的方法提高了注视精度,但它们缺乏鲁棒性和泛化性,特别是在无约束环境下。
本文介绍了一种新的估计方法来在RGB图像中估计3D凝视角度,使用一种 multi-loss 的方法。
我们建议使用两个全连接层独立回归每个凝视角度(偏航,俯仰),以提高每个角度的预测精度。
此外,我们对每个凝视角度使用两个单独的损失函数。每一种损失都由注视二值分类和回归组成。
最后,这两种损失通过网络反向传播,精确微调网络权重,提高网络泛化。
我们通过使用softmax层和交叉熵损失(cross-entropy loss)来执行gaze bin分类,以便网络以鲁棒的方式估计注视角的邻域。
基于所提出的损失函数和softmax层 (L2 loss+ cross-entropy loss+ softmax层),我们提出了一种新的网络(L2CS-Net)来预测无约束设置下的3D凝视向量。
最后,我们在两个流行的数据集MPIIGaze和Gaze360上评估了我们的网络的鲁棒性。L2CS-Net在MPIIGaze和Gaze360数据集上实现了SOAT的性能。

测试环境:

VS2019

.net framework 4.7.2

OpenCvSharp 4.8.0

Microsoft.ML.OnnxRuntime 1.16.3

效果:

实现部分代码:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;namespace FIRC
{public partial class Form1 : Form{Mat src = new Mat();FaceDetector fd = new FaceDetector();public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";openFileDialog.RestoreDirectory = true;openFileDialog.Multiselect = false;if (openFileDialog.ShowDialog() == DialogResult.OK){src = Cv2.ImRead(openFileDialog.FileName);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);}}private void button2_Click(object sender, EventArgs e){if(pictureBox1.Image==null){return;}var results = fd.Inference(src);var resultMat = fd.DrawImage(src,results);pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap}private void Form1_Load(object sender, EventArgs e){fd.LoadWeights(Application.StartupPath+"\\weights\\yolov8n-face.onnx", Application.StartupPath + "\\weights\\l2cs_net_1x3x448x448.onnx");}private void btn_video_Click(object sender, EventArgs e){}}
}

视频演示:

bilibili.com/video/BV19t4y1f7rN/

源码地址:

参考文献:

1.https://blog.csdn.net/gaoqing_dream163/article/details/132149150

相关文章:

[C#]OpenCvSharp结合yolov8-face实现L2CS-Net眼睛注视方向估计或者人脸朝向估计

源码地址: github地址:https://github.com/Ahmednull/L2CS-Net L2CS-Net介绍: 眼睛注视(eye gaze) 是在各种应用中使用的基本线索之一。 它表示用户在人机交互和开放对话系统中的参与程度。此外,它还被用…...

[2024区块链开发入门指引] - 比特币与区块链诞生

一份为小白用户准备的免费区块链基础教程 工欲善其事,必先利其器 Web3开发中,各种工具、教程、社区、语言框架.。。。 种类繁多,是否有一个包罗万象的工具专注与Web3开发和相关资讯能毕其功于一役? 参见另一篇博文👉 2024最全面…...

【大数据面试知识点】Spark中的累加器

Spark累加器 累加器用来把Executor端变量信息聚合到Driver端,在driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回driver端进行merge。 累加器一般是放在行动算子…...

深度学习核心技术与实践之深度学习基础篇

非书中全部内容,只是写了些自认为有收获的部分 神经网络 生物神经元的特点 (1)人体各种神经元本身的构成很相似 (2)早期的大脑损伤,其功能可能是以其他部位的神经元来代替实现的 (3&#x…...

Kafka安装及简单使用介绍

🍓 简介:java系列技术分享(👉持续更新中…🔥) 🍓 初衷:一起学习、一起进步、坚持不懈 🍓 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正🙏 🍓 希望这篇文章对你有所帮助,欢…...

20231229在Firefly的AIO-3399J开发板的Android11使用挖掘机的DTS配置单前后摄像头ov13850

20231229在Firefly的AIO-3399J开发板的Android11使用挖掘机的DTS配置单前后摄像头ov13850 2023/12/29 11:10 开发板:Firefly的AIO-3399J【RK3399】 SDK:rk3399-android-11-r20211216.tar.xz【Android11】 Android11.0.tar.bz2.aa【ToyBrick】 Android11.…...

九台虚拟机网站流量分析项目启动步骤

文章目录 零、操作概述一、服务器分配二、9台虚拟机相互免密登录三、Nginx(反向代理服务器)四、Tomcat(Web服务器)五、测试Nginx反向代理是否成功六、Flume集群配置七、修改LogDemo项目八、项目1703FluxStorm九、Hadoop集群十、整个集群的启动十一、部署项目十二、测试项目…...

迅软科技助力高科技防泄密:从华为事件中汲取经验教训

近期,涉及华为芯片技术被窃一事引起广泛关注。据报道,华为海思的两个高管张某、刘某离职后成立尊湃通讯,然后以支付高薪、股权支付等方式,诱导多名海思研发人员跳槽其公司,并指使这些人员在离职前通过摘抄、截屏等方式…...

数据结构期末复习(2)链表

链表 链表(Linked List)是一种常见的数据结构,用于存储一系列具有相同类型的元素。链表由节点(Node)组成,每个节点包含两部分:数据域(存储元素值)和指针域(指…...

Hive中支持毫秒级别的时间精度

实际上,Hive 在较新的版本中已经支持毫秒级别的时间精度。你可以通过设置 hive.exec.default.serialization.format 和 mapred.output.value.format 属性为 1,启用 Hive 的时间精度为毫秒级。可以使用以下命令进行设置: set hive.exec.defau…...

【深度学习:Recurrent Neural Networks】循环神经网络(RNN)的简要概述

【深度学习】循环神经网络(RNN):连接过去与未来的桥梁 循环神经网络简介什么是循环神经网络 (RNN)?传统 RNN 的架构循环神经网络如何工作?常用激活函数RNN的优点和缺点RNN 的优点:RNN 的缺点: 循…...

HTML 基础

文章目录 01-标签语法标签结构 03-HTML骨架04-标签的关系05-注释06-标题标签07-段落标签08-换行和水平线09-文本格式化标签10-图像标签图像属性 11-路径相对路径绝对路径 12-超链接标签13-音频14-视频 01-标签语法 HTML 超文本标记语言——HyperText Markup Language。 超文本…...

大学物理II-作业1【题解】

1.【单选题】——考查高斯定理 下面关于高斯定理描述正确的是(D )。 A.高斯面上的电场强度是由高斯面内的电荷激发的 B.高斯面上的各点电场强度为零时,高斯面内一定没有电荷 C.通过高斯面的电通量为零时,高斯面上各点电场强度…...

Unity引擎有哪些优点

Unity引擎是一款跨平台的游戏引擎,拥有很多的优点,如跨平台支持、强大的工具和编辑器、灵活的脚本支持、丰富的资源库和强大的社区生态系统等,让他成为众多开发者选择的游戏开发引擎。下面我简单的介绍一下Unity引擎的优点。 跨平台支持 跨…...

【华为机试】2023年真题B卷(python)-猴子爬山

一、题目 题目描述: 一天一只顽猴想去从山脚爬到山顶,途中经过一个有个N个台阶的阶梯,但是这猴子有一个习惯: 每一次只能跳1步或跳3步,试问猴子通过这个阶梯有多少种不同的跳跃方式? 二、输入输出 输入描述…...

【Harmony OS - Stage应用模型】

基本概念 大类分为: Ability Module: 功能模块 、Library Module: 共享功能模块 编译时概念: Ability Module在编译时打包生成HAP(Harmony Ability Package),一个应用可能会有多个HAP&#xf…...

Java 8 中的 Stream 轻松遍历树形结构!

可能平常会遇到一些需求,比如构建菜单,构建树形结构,数据库一般就使用父id来表示,为了降低数据库的查询压力,我们可以使用Java8中的Stream流一次性把数据查出来,然后通过流式处理,我们一起来看看…...

Openwrt修改Dropbear ssh root密码

使用ssh工具连接路由器 输入:passwd root 输入新密码 重复新密码 设置完成 rootImmortalWrt:~# passwd root Changing password for root New password:...

js 对象

js 对象定义 <!DOCTYPE html> <html> <body><h1>JavaScript 对象创建</h1><p id"demo1"></p> <p>new</p> <p id"demo"></p><script> // 创建对象&#xff1a; var persona {fi…...

【SpringBoot】常用注解

RequestBody&#xff1a;自动将请求体中的 json 数据转换为实体类对象。 这个例子凑巧传入的json属性键名和User键名一致&#xff0c;可以直接使用User实体类对象&#xff0c;如果键名不一致则需要用一个Map 类接收参数&#xff1a; PutMapping("/update")public R…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...