Python使用余弦相似度比较两个图片
为了使用余弦相似度来找到与样例图片相似的图片,我们需要先进行一些预处理,然后计算每两张图片之间的余弦相似度。以下是一个简单的实现:
- 读取样例图片和目标文件夹中的所有图片。
- 对每张图片进行预处理,例如灰度化、降噪等。
- 计算每张图片与样例图片的余弦相似度。
- 找到与样例图片最相似的图片并复制到指定目录。
首先,确保你已经安装了必要的库:
pip install opencv-python numpy Pillow scikit-image
以下是Python代码:
import cv2
import numpy as np
from skimage import io, img_as_ubyte
from sklearn.metrics.pairwise import cosine_similarity
from PIL import Image
import os
import shutil # 图片路径和目标路径
sample_image_path = "测试图片\\356-1703817660893.jpg"
image_folder = "未分类图片文件夹"
output_folder = "输出图片文件夹" # 读取样例图片
sample_image = cv2.imread(sample_image_path, cv2.IMREAD_GRAYSCALE)
sample_image = img_as_ubyte(sample_image) # 确保图片在0-255范围内
sample_image = io.imread(sample_image) # 使用skimage读取,确保是数组格式 # 读取目标文件夹中的所有图片并预处理
images = []
for filename in os.listdir(image_folder): img = cv2.imread(os.path.join(image_folder, filename), cv2.IMREAD_GRAYSCALE) img = img_as_ubyte(img) # 确保图片在0-255范围内 img = io.imread(img) # 使用skimage读取,确保是数组格式 images.append(img) # 计算余弦相似度并找到最相似的图片
similarities = []
for image in images: similarity = cosine_similarity(sample_image.reshape(-1, 1), image.reshape(-1, 1))[0][0] similarities.append((similarity, image))
similarities.sort(key=lambda x: x[0], reverse=True) # 按相似度排序
most_similar_image = similarities[0][1] # 最相似的图片 # 复制最相似的图片到指定目录
output_filename = os.path.join(output_folder, "most_similar_" + os.path.basename(sample_image_path))
shutil.copyfile(os.path.join(image_folder, os.path.basename(sample_image_path)), output_filename) # 复制原样例图片到指定目录
shutil.copyfile(os.path.join(image_folder, os.path.basename(most_similar_image)), output_filename) # 复制最相似的图片到指定目录
注意:这个代码假设所有的图片都已经以灰度格式存储,并且大小相同。如果实际情况不是这样,你可能需要进行一些额外的预处理步骤,例如调整大小或转换为灰度。此外,对于大型图片集,计算余弦相似度可能会比较慢,因此你可能需要使用更高效的相似度计算方法或优化代码。
相关文章:
Python使用余弦相似度比较两个图片
为了使用余弦相似度来找到与样例图片相似的图片,我们需要先进行一些预处理,然后计算每两张图片之间的余弦相似度。以下是一个简单的实现: 读取样例图片和目标文件夹中的所有图片。对每张图片进行预处理,例如灰度化、降噪等。计算…...
树莓派4B-Python使用PyCharm的SSH协议在电脑上远程编辑程序
目录 前言一、pycharm的选择二、添加SSH的解释器使用总结 前言 树莓派的性能始终有限,不好安装与使用高级一点的程序编辑器,如果只用thonny的话,本人用得不习惯,还不如PyCharm,所以想着能不能用电脑中的pycharm来编写…...
Servlet的自动加载、ServletConfig对象、ServletContext对象
一、 Servlet的自动加载 默认情况下,第一次访问servlet的时候,创建servlet对象。如果servlet构造函数里面的代码或者init方法里面的代码比较多,就会导致用户第一次访问servlet的时候比较慢。这个时候,我们可以改变servlet对象的创…...
Vue - Class和Style绑定详解
1. 模板部分 <template><div><!-- Class 绑定示例 --><div :class"{ active: isActive, text-danger: hasError }">Hello, Vue!</div><!-- Class 绑定数组示例 --><div :class"[activeClass, errorClass]">Cla…...
适用于 Windows 的 7 个顶级视频转换器 – 流畅的视频转换体验!
对于任何想要增强视频转换体验的人来说,视频转换器都是必不可少的工具。无论您是需要转换视频文件格式以实现兼容性,还是只是想优化视频以获得更好的质量,可靠的视频转换器都可以使该过程无缝且高效。在这篇博文中,我们将探讨适用…...
Vue3全局属性app.config.globalProperties
文章目录 一、概念二、实践2.1、定义2.2、使用 三、最后 一、概念 一个用于注册能够被应用内所有组件实例访问到的全局属性的对象。点击【前往】访问官网 二、实践 2.1、定义 在main.ts文件中设置app.config.globalPropertie import {createApp} from vue import ElementPl…...
单片机开发--keil5
一.keil5 Keil uVision5是一个集成开发环境(IDE),用于对嵌入式系统中的微控制器进行编程。它是一个软件套件,包括源代码编辑器、项目经理、调试器以及微控制器开发、调试和编程所需的其他工具。Keil uVision5 IDE主要用于对基于A…...
<JavaEE> TCP 的通信机制(三) -- 滑动窗口
目录 TCP的通信机制的核心特性 四、滑动窗口 1)什么是滑动窗口? 2)滑动窗口的作用是什么? 3)批量传输出现丢包如何处理? 1> 接收端ACK丢包 2> 发送端数据包丢包 4)适用性 TCP的通…...
听GPT 讲Rust源代码--library/portable-simd
File: rust/library/portable-simd/crates/core_simd/examples/spectral_norm.rs spectral_norm.rs是一个示例程序,它展示了如何使用Portable SIMD库中的SIMD(Single Instruction Multiple Data)功能来实现频谱规范化算法。该示例程序是Rust源…...
CMake入门教程【基础篇】CMake+Minggw构建项目
文章目录 Minggw是什么Minggw下载CMake下载安装第1步:下载CMake第2步:安装CMake 如何构建和编译项目:使用CMake和MinGW总结 Minggw是什么 MinGW(Minimalist GNU for Windows)是一个免费的软件开发环境,旨在…...
2024年原创深度学习算法项目分享
原创深度学习算法项目分享,包括以下领域: 图像视频、文本分析、知识图谱、推荐系统、问答系统、强化学习、机器学习、多模态、系统界面、爬虫、增量学习等领域… 有需要的话,评论区私聊...
Linux自定义shell编写
Linux自定义shell编写 一.最终版本展示1.动图展示2.代码展示 二.具体步骤1.打印提示符2.解析命令行3.分析是否是内建命令1.shell对于内建名令的处理2.cd命令3.cd函数的实现4.echo命令的实现5.export命令的实现6.内建命令函数的实现 4.创建子进程通过程序替换执行命令5.循环往复…...
堆的应用:堆排序和TOP-K问题
上次才讲完堆的相关问题:二叉树顺序结构与堆的概念及性质(c语言实现堆 那今天就接着来进行堆的主要两方面的应用:堆排序和TOP-K问题 文章目录 1.堆排序1.1概念、思路及代码1.2改良代码(最初建立大堆用AdjustDow) 2. TO…...
element表格排序功能
官方展示 个人项目 可以分别对每一项数据进行筛选 注:筛选的数据不能是字符串类型必须是数字类型,否则筛选会乱排序 html <el-table :data"tableData" border height"600" style"width: 100%"><el-table-co…...
HNU-Java程序设计基础训练-2023
1.DNA序列(Java) 【问题描述】 一个DNA序列由A/C/G/T四个字母的排列组合组成。G和C的比例(定义为GC-Ratio)是序列中G和C两个字母的总的出现次数除以总的字母数目(也就是序列长度)。在基因工程中…...
数据库和数据库编程
数据库、数据表、表数据操作以及数据库编程相关的知识点 1. 数据库的概念: 数据库是用于存储和组织数据的系统。数据库管理系统(DBMS)是管理数据库的软件,提供对数据的访问、查询和维护。关系型数据库是一种通过表格结构来组织和管理数据的数据库。 2…...
爬虫基础一(持续更新)
爬虫概念: 通过编写程序,模拟浏览器上网,然后让其去互联网上抓取数据的过程 分类: 1,通用爬虫:抓取一整张页面数据 2,聚焦爬虫:抓取页面中的局部内容 3,增量式爬虫&…...
右键菜单“以notepad++打开”,在windows文件管理器中
notepad 添加到文件管理器的右键菜单中 找到安装包,重新安装一般即可。 这里有最新版:地址 密码:f0f1 方法 在安装的时候勾选 “Context Menu Entry” 即可 Notepad的右击打开文件功能 默认已勾选 其作用是添加右键快捷键。即,对于任何…...
JSON.parseObject强制将自动转化的Intage型设置为Long型
通过Redis或Caffeine存储入json型String,通过JSON.parseObject自动类型转化之后,数值会优先转为Intage,如果存入的字符值大于Intage最大值,会自动转为Long型; 需求是:实要取出时数值类型值为Long࿱…...
Redis的集群模式:主从 哨兵 分片集群
基于Redis集群解决单机Redis存在的问题,在之前学Redis一直都是单节点部署 单机或单节点Redis存在的四大问题: 数据丢失问题:Redis是内存存储,服务重启可能会丢失数据 > 利用Redis数据持久化的功能将数据写入磁盘并发能力问题…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》
近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...
云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...
