当前位置: 首页 > news >正文

【数据结构】二叉搜索(查找/排序)树

一、二叉搜索树基本概念

1、定义

二叉搜索树,又称为二叉排序树二叉查找树,它满足如下四点性质:

1)空树是二叉搜索树;
2)若它的左子树不为空,则左子树上所有结点的值均小于它根结点的值;
3)若它的右子树不为空,则右子树上所有结点的值均大于它根结点的值;
4)它的左右子树均为二叉搜索树;

 如上图所示:二叉搜索树的任何一棵子树,它的根结点的值一定大于左子树所有结点的值,且一定小于右子树所有结点的值。如果对二叉搜索树进行中序遍历,我们可以发现,得到的序列是一个递增序列,上述的遍历结果为[1,2,3,4,5,6,7,8]。

如果要查找4,只需要从根结点比较查找3次就能找到,可以显著提高搜索的速度

二、二叉搜索树基础操作

1、查找算法

(1)查找原理

在二叉搜索树中查找某个数是否存在,存在返回 true,不存在返回 false

对于要查找的数 val ,从根结点出发,总共四种情况依次判断:

1)若二叉搜索树为空树,直接返回 false;

2) val 的值 等于 树根结点的值,则直接返回 true;

3) val 的值 小于 树根结点的值,说明 val 对应的结点不在根结点,也不在右子树上,需要在左子树上查找,递归返回左子树的查找结果;

4) val 的值 大于 树根结点的值,说明 val 对应的结点不在根结点,也不在左子树上,需要在右子树上查找,递归返回右子树的查找结果;

(2)查找算法源码

① 结点源码

struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}};

② 查找算法源码 (深度优先,递归查找)

bool BSTFind(TreeNode* root, int val) 
{if (root == nullptr) {return false;}if (root->val == val) {return true;}if (val < root->val) {return BSTFind(root->left, val);}else {return BSTFind(root->right, val);}
}

2、插入算法

(1)插入原理

将给定的值 val 生成结点后,插入到树上的某个位置,并且保持这棵树还是二叉搜索树。对于要插入的值 val ,从根结点出发,总共四种情况依次判断:

1)若为空树,则创建一个值为 val 的结点并且返回根结点;

2) val 的值 等于 树根结点的值,无须执行插入,直接返回根结点;

3) val 的值 小于 树根结点的值,那么插入位置一定在 左子树,递归执行插入左子树的过程,并且返回插入结果作为新的左子树

4) val 的值 大于 树根结点的值,那么插入位置一定在 右子树,递归执行插入右子树的过程,并且返回插入结果作为新的右子树

(2) 插入源码

TreeNode* BSTInsert(TreeNode* root, int val) {if (root == nullptr) {root = new TreeNode(val);return root;}if (val == root->val) {return root;}if (val < root->val) {root->left = BSTInsert(root->left, val);}else {root->right = BSTInsert(root->right, val);}return root;
}

3、删除算法

(1)删除原理

删除值为 val 结点,从根结点出发,总共四种情况依次判断:

1)空树,不存在结点直接返回空树;

2) val 的值 小于 树根结点的值,则需要删除的结点一定不在右子树上,递归调用删除左子树的对应结点;

3) val 的值 大于 树根结点的值,则需要删除的结点一定不在左子树上,递归调用删除右子树的对应结点;

4) val 的值 等于 树根结点的值,相当于是要删除根结点,这时候又要分三种情况:

  • 当前树只有左子树,则直接将左子树返回,并且释放当前树根结点的空间;
  • 当前树只有右子树,则直接将右子树返回,并且释放当前树根结点的空间;
  • 当左右子树都存在时,需要在右子树上找到一个值最小的结点,替换新的树根,而其它结点组成的树作为它的子树;

(2)删除源码

由上述删除算法原理可知,删除结点之前可能还需要找最小结点,所以需要定义查找最小结点接口

int BSTFindMin(TreeNode* root) {if (root->left)return BSTFindMin(root->left);  return root->val;                   
}

查找根为 root ,值最小的那个结点的值,根据二叉搜索树的性质,如果左子树存在,则必然存在更小的值,递归搜索左子树,且最小值结点为叶子结点;如果左子树不存在,则根结点的值必然最小,直接返回。

删除根结点,并返回新根结点

//删除根结点并返回新根结点
TreeNode* Delete(TreeNode* root) {TreeNode* delNode, * retNode;if (root->left == nullptr) {delNode = root;retNode = root->right;delete delNode;delNode = nullptr;}else if (root->right == nullptr) {delNode = root;retNode = root->left;delete delNode;delNode = nullptr;}else {retNode = BSTFindMin(root->right);retNode->left = root->left;retNode->right = root->right;delete root;root = nullptr;}return retNode;
}
  • 如果左子树为空,则用右子树做为新的树根;
  • 如果右子树为空,则用左子树作为新的树根;
  • 否则,当左右子树都为非空时,利用 BSTFindMin ,从右子树上找出最小的结点,作为新的根。

删除指定值的结点

//删除指定结点
TreeNode* BSTDelete(TreeNode* root, int val) {if (nullptr == root) {return nullptr;                                  }if (val == root->val) {return Delete(root);                          }else if (val < root->val) {root->left = BSTDelete(root->left, val);      }else if (val > root->val) {root->right = BSTDelete(root->right, val);    }return root;                                      
}
  • 如果为空树,则直接返回空结点;
  • 如果需要删除的结点的值 等于 树根结点的值,则直接调用接口 Delete ;
  • 如果需要删除的结点的值 小于 树根结点的值,则需要删除的结点必定在左子树上,递归调用左子树的删除,并且将返回值作为新的左子树的根结点;
  •  如果需要删除的结点的值 大于 树根结点的值,则需要删除的结点必定在右子树上,递归调用右子树的删除,并且将返回值作为新的右子树的根结点;
  • 返回当前树的根结点;

相关文章:

【数据结构】二叉搜索(查找/排序)树

一、二叉搜索树基本概念 1、定义 二叉搜索树&#xff0c;又称为二叉排序树&#xff0c;二叉查找树&#xff0c;它满足如下四点性质&#xff1a; 1&#xff09;空树是二叉搜索树&#xff1b; 2&#xff09;若它的左子树不为空&#xff0c;则左子树上所有结点的值均小于它根结…...

Vue:Vue与VueComponent的关系图

1.一个重要的内置关系&#xff1a;VueComponent.prototype.proto Vue.prototype 2.为什么要有这个关系&#xff1a;让组件实例对象&#xff08;vc&#xff09;可以访问到 Vue原型上的属性、方法。 案例证明&#xff1a; <!DOCTYPE html> <html lang"en"&…...

Elasticsearch8集群部署

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 本文记录在3台服务器上离线搭建es8.7.1版本集群。 1. 修改系统配置 1.1 hosts配置 在三台es节点服务器加入hostname解析&…...

【小白专用】c# 如何获取项目的根目录

1、取得控制台应用程序的根目录方法 方法1、Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径 方法2、AppDomain.CurrentDomain.BaseDirectory 获取基目录&#xff0c;它由程序集冲突解决程序用来探测程序集 2、取得Web应用程序的根目录方法 方法1、HttpRun…...

【PXIE301-208】基于PXIE总线架构的Serial RapidIO总线通讯协议仿真卡

板卡概述 PXIE301-208是一款基于3U PXIE总线架构的Serial RapidIO总线通讯协议仿真卡。该板卡采用Xilinx的高性能Kintex系列FPGA作为主处理器&#xff0c;实现各个接口之间的数据互联、处理以及实时信号处理。板卡支持4路SFP光纤接口&#xff0c;支持一个PCIe x8主机接口&…...

软件测试/测试开发丨Windows系统chromedriver安装与环境变量配置

一、selenium 环境配置 1、chrome 浏览器的安装与配置 目前比较常用的浏览器是 Google Chrome 浏览器&#xff0c;所以本教程以 chrome 为主&#xff0c;后面简介一下其他浏览器的环境配置。 &#xff08;1&#xff09;chrome 下载: www.google.cn/chrome/ &#xff08;2&a…...

【vim 学习系列文章 3.1 -- vim 删除 ^M】

请阅读【嵌入式开发学习必备专栏 之 VIM 专栏】 文章目录 ^M 来源^M 删除 ^M 来源 在 Vim 中打开文件时&#xff0c;您可能会遇到行尾的 ^M 字符&#xff0c;这通常是因为文件使用了 Windows 风格的回车换行符&#xff08;CRLF&#xff09;&#xff0c;而不是 Unix/Linux 风格…...

深入理解 C# 中的字符串比较:String.CompareTo vs String.Equals

深入理解 C# 中的字符串比较&#xff1a;String.CompareTo vs String.Equals 在处理字符串时&#xff0c;了解如何正确比较它们对于编写清晰、有效和可靠的 C# 程序至关重要。本文将深入探讨 C# 中的两个常用字符串比较方法&#xff1a;String.CompareTo 和 String.Equals&…...

DevOps持续交付之容器化CICD流水线

DevOps持续交付 随着DevOps⼤规模化的落地和应⽤&#xff0c;持续集成以及持续交付已经是⼀种常态的。CI指的是持续集成&#xff0c;使⽤的开源⼯具是Jenkins&#xff0c;CD指的是持续交付和持续部署&#xff0c;⼀个完整的软件开发⽣命周期为: 主要流程可以具体为: 构建阶段…...

Linux/Unix/国产化操作系统常用命令(二)

目录 后CentOS时代国产化操作系统国产化操作系统有哪些常用Linux命令关于Linux的LOGO 后CentOS时代 在CentOS 8发布后&#xff0c;就有了一些变化和趋势&#xff0c;可以说是进入了"后CentOS时代"。这个时代主要表现在以下几个方面&#xff1a; CentOS Stream的引入…...

基于SpringBoot的智慧生活商城系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的智慧生活商城系统,java…...

Vue框架引入Axios

首先已经创建好了 Vue 框架&#xff0c;安装好了 node.js。 没有完成的可按照此博客搭建&#xff1a;搭建Vue项目 之后打开终端&#xff0c;使用命令。 1、命令安装 axios 和 vue-axios npm install axios --save npm install vue-axios --save2、package.json 查看版本 在 p…...

EasyExcel 通过模板 导入、导出、下载模板

EasyExcel 通过模板 导入、导出、下载模板 import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor;import javax.validation.constraints.NotBlank; import javax.validation.constraints.Pattern; import java.io.…...

SAP ABAP通过代码解锁SM12中被锁定目标<转载>(RFC: ENQUEUE_READ和 ENQUE_DELETE)

原文链接&#xff1a;https://blog.csdn.net/sinat_38119716/article/details/121406275 备注 RFC:ENQUEUE_READ 读取的是SM12的数据 RFC:ENQUEUE_READ2 读取的是SMENQ的数据 SM12 和 SMENQ 的数据其实是一样的&#xff0c;只是一个是旧的TCODE 一个是新的 解锁用的都是RFC: …...

跳跃表原理及实现

一、跳表数据结构 跳表是有序表的一种&#xff0c;其底层是通过链表实现的。链表的特点是插入删除效率高&#xff0c;但是查找节点效率很低&#xff0c;最坏的时间复杂度是O(N)&#xff0c;那么跳表就是解决这一痛点而生的。 为了提高查询效率&#xff0c;我们可以给链表加上索…...

详解Vue3中的鼠标事件mousemove、mouseover和mouseout

本文主要介绍Vue3中的常见鼠标事件mousemove、mouseover和mouseout。 目录 一、mousemove——鼠标移动事件二、mouseover——鼠标移入事件三、mouseout——鼠标移出事件 下面是Vue 3中常用的鼠标事件mousemove、mouseover和mouseout的详解。 一、mousemove——鼠标移动事件 鼠…...

Java:socket编程

目录 1、主程序 2、socket任务类 3、jdbc任务类 4、tomcat-jdbc连接池 5、jar包依赖 1、主程序 创建2个线程池&#xff0c;一个用于管理socket连接&#xff0c;一个用来管理jdbc连接。 package socket;import java.io.IOException; import java.net.ServerSocket; import…...

哨兵1号回波数据(L0级)FDBAQ压缩算法详解

本专栏目录: 全球SAR卫星大盘点与回波数据处理专栏目录-CSDN博客 1. 全球SAR卫星回波数据压缩算法统计 各国的SAR卫星的压缩算法按照时间轴排列如下: 可以看出传统的分块BAQ压缩算法(上图粉色)仍然是主流,哨兵1号其实也有传统的BAQ压缩模式。 本文介绍哨兵1号用的FDBAQ算…...

盾构机数据可视化监控平台 | 图扑数字孪生

2002 年,中国 863 计划把盾构机列为国家关键技术&#xff0c;以国家力量为主导&#xff0c;集中力量进行盾构机专项研究。在 2008 年&#xff0c;中国成功研制出属于自己的国产盾构机——中国中铁一号&#xff0c;同时还打通了天津地铁 1500m 的隧道。此举更彻底地打破了国内盾…...

计算机网络课程设计-企业网三层架构

&#xff08;单人版&#xff09; 摘 要 本篇报告主要解决了为一家名为西宫的公司网络搭建问题&#xff0c;该网络采用企业网三层架构对完了过进行设计。首先使用以太网中继&#xff0c;主要使用VLAN划分的技术来划定不同部门。使用MSTP对每个组配置生成树&#xff0c;防止交换机…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...