当前位置: 首页 > news >正文

【C++】string类的使用

目录

一、标准库中的string类

二、string类的常用接口

1、string类对象的常见构造

2、string类对象的容量操作

2.1、size 与 length

2.2、capacity 与 reserve

2.3、resize

2.4、总结

3、string类对象的访问及遍历操作

3.1、operator[] 与 at

3.2、begin + end

3.3、rbegin + rend

3.4、 const类型迭代器

3.5、范围for

4. string类对象的修改操作

4.1、push_back、append、operator+=

4.2、insert 与 erase

4.3、find 与 replace

4.4、substr 与 rfind

4.5、c_str

4.6、find_first_of 与 find_last_of

5、string类非成员函数

5.1、getline


一、标准库中的string类

string类是由模板 basic_string 显示实例化为 char 类型得到的类,并用关键字 typedef 命名为 string

 当模板参数是 char 时,类名为 string ,与之相对的,还有其他各种各样由模板 basic_string 显示实例化的到的类名,比如:wstring、u16string、u32string等

 wstring 类管理的是 wchar_t 类型的字符,一个字符占据个字节。

 u16string 类管理的是 char16_t 类型的字符,一个字符占据个字节。

 u32string 类管理的是 char32_t 类型的字符,一个字符占据 4 个字节。


之所以要区分出这么多字符类,是为了满足各种各样不同的需求,比如编码的需求。

 以 ascll 码为例,ascll码的出现是为了更好的表示英文,算上26个字母、10个数字以及各种各样的符号、控制字符等等,只需要 128 个字符的映射表就能满足几乎所有的表示需求。

但是对于中文、甚至是更加复杂的文字而言,128个字符的映射表就已经没有办法满足需求了,就需要更多字符的映射表,自然也需要占据更多字节大小的空间。

为了更好的满足这一需求,就出现了另一个编码规则:Unicode,即统一码。统一码又分为 3 种,分别为 UTF-8、UTF-16、UTF-32。

UTF-8兼容ascll码,对不同范围的字符使用不同长度的编码,也是我们最常用的编码方式。

 对于0x00-0x7F之间的字符,UTF-8编码与ascll编码完全相同。UTF-8编码的最大长度是4个字节。从上表可以看出,4字节模板有21个x,即可以容纳21位二进制数字。统一码的最大码位0x10FFFF也只有21位。UTF-8 编码以二进制数字的前缀来区分一个字符占据几个字节

其中类 string 所对应的编码方式就是 UFT-8

 我们来举个例子具体说明一下:

 str1 中存储的是英文字母,使用 ascll 码即可表示(一个字符占据一个字节),例如 'h' 的值为十进制 104 ,换算到八位二进制为 01101000 前缀为零

 str2 中存储的是中文字符,一个字符占据两个字节,所以这两个字节的二进制数前缀分别为 110 10。转换成十进制表现为两个负数。两个中文字符就是四个字节,加上最后的 '\0' 为五个字节大小。

通过更改中文字符的数值,我们可以观察到中文字符编码的规律是把同音字编在一起的:

二、string类的常用接口

1、string类对象的常见构造

(constructor)函数名称功能说明
string()构造空的string类对象,即空字符串
string(const char* s)用C-string来构造string类对象
string(size_t n, char c)string类对象中包含n个字符c
string(const string& s)拷贝构造函数
string (const string& str, size_t pos, size_t len = npos)拷贝从字符串第 pos 个字符开始向后的 npos 个字符

例如:

 对于 string (const string& str, size_t pos, size_t len = npos) ,库中提供了一些额外的解释,如果 npos 的大小超出了字符串的有效长度范围,就自动取到字符串中最后一个有效字符为止。如果没有指定 npos 的值,就使用缺省参数 -1 ,由于 size_t 是无符号整型,所以 -1 实际上是二进制的全一,即最大的整型数值 2^32 - 1

2、string类对象的容量操作

函数名称功能说明
size(重点)返回字符串有效字符长度
length返回字符串有效字符长度
capacity返回空间总大小
empty (重点)检测字符串是否为空串,是返回true,否则返回false
clear (重点)清空有效字符
reserve (重点)为字符串预留空间**
resize (重点)将有效字符的个数改成n个,多出的空间用字符c填充

2.1、size 与 length

 size length 都是返回字符串的有效字符长度,用法如下:

 功能完全相同,只是为了名字与 stl 中其他模板的名称保持一致,就增加了一个 size ,除了名字不同外,没有区别。

2.2、capacity 与 reserve

 capacity 返回空间总大小,用于观察开辟空间的情况:

 当不断向string对象 s 中尾插字符时,会导致 s 不断的扩容,可以发现除了第一次扩容外,其他扩容后的大小都是上一次的 1.5 倍。

 string 对象第一次扩容的规则大致如下:

 类string中有一个容量为 16 个字符的数组 buf ,如果对象中存储的字符数量小于等于 16 个,就会把字符存入数组 buf 中,不使用指针 _ptr 。如果对象中存储的字符数量大于 16 个,就会使用指针 _ptr 来开辟空间,第一次直接开辟 32 个字符的空间,并把字符存放在新开辟的空间中, buf 不再使用。之后每次开辟的空间大小是开辟之前大小的 1.5 倍。

这种规则只适用于VS编译器,不同的编译器有不同的扩容规则。

为了防止编译器不断的给 string 对象扩容空间,造成资源的浪费,我们可以使用 reserve 直接给对象预留一定大小的空间:

 其中因为一些内存对齐等原因,实际内存空间与我们设定的有一些出入,但一定不会比我们设置的小。

2.3、resize

 resize 将有效字符的个数改成 n 个,多出的空间用字符c填充。 resize 可以扩容空间,并进行初始值填充:

可以看到 resize reserve 不同。使用 resize 进行扩容的时候,也进行了字符填充,使对象的有效字符长度也发生了变化。

 在vs编译器中,默认填充的字符是 '\0'

我们也可以指定填充的字符,写成如下形式:

 如果指定的 n 值比 size 小,则会删除数据,保留前 n 个:

 size 变为 5 capacity 的值不变。 

2.4、总结

  1. size()与length()方法底层实现原理完全相同,引入size()的原因是为了与其他容器的接口保持一致,一般情况下基本都是用size()。
  2. clear()只是将string中有效字符清空,不改变底层空间大小。
  3. resize(size_t n) 与 resize(size_t n, char c)都是将字符串中有效字符个数改变到n个,不同的是当字符个数增多时:resize(n)用0来填充多出的元素空间,resize(size_t n, char c)用字符c来填充多出的元素空间。注意:resize在改变元素个数时,如果是将元素个数增多,可能会改变底层容量的大小,如果是将元素个数减少,底层空间总大小不变。
  4. reserve(size_t res_arg=0):为string预留空间,不改变有效元素个数,当reserve的参数小于string的底层空间总大小时,reserver不会改变容量大小。

3、string类对象的访问及遍历操作

函数名称功能说明
operator[]返回pos位置的字符,const string类对象调用
begin+ endbegin获取一个字符的迭代器 + end获取最后一个字符下一个位置的迭
代器
rbegin + rendbegin获取一个字符的迭代器 + end获取最后一个字符下一个位置的迭
代器
范围forC++11支持更简洁的范围for的新遍历方式

3.1、operator[] 与 at

 operator[] 返回pos位置的字符,是一个运算符重载,关于运算符重载的内容,在《类和对象(二)》里有过详细的说明。

 at 的作用与 [] 类似,都是获取指定下标的数据,只不过在越界的处理方面有些不同。如果 [] 中的下标越界,程序会直接发生断言错误,终止程序,而如果 at 指向的下标越界,则会进行抛异常。

3.2、begin + end

我们想要打印一个数组,除了使用运算符重载 [] 外,还可以使用 begin end 获取迭代器。具体用法如下:

 关于迭代器,大家暂时可以先理解为指针, begin 是第一个位置的指针, end 是最后一个位置的下一个位置的指针。

3.3、rbegin + rend

 rbegin rend 获取的是反向迭代器,目前阶段同样可以先把他们看作指针,其中 rbegin 指向最后一个数据的位置, rend 指向第一个位置的前一个位置:

 用法如下:

3.4、 const类型迭代器

当使用 const 类型来接收string类对象时,如果直接使用关键字 interator 来定义迭代器变量,编译器会报错。

 所以为了保证权限不被放大,需要使用关键字 const_iterator 来定义迭代器变量:

3.5、范围for

打印一个数组,还有另一种方法,就是使用 范围for ,具体用法如下:

 实际上,范围for的底层就是使用迭代器来实现的。

4. string类对象的修改操作

函数名称功能说明
push_back在字符串后尾插字符c
append在字符串后追加一个字符串
operator+= (重点)在字符串后追加字符串str
c_str(重点)返回C格式字符串
find(重点)从字符串pos位置开始往后找字符c,返回该字符在字符串中的位置
replace替换字符串pos位置,len长度的字符
rfind从字符串pos位置开始往前找字符c,返回该字符在字符串中的位置
substr在str中从pos位置开始,截取n个字符,然后将其返回
insert在str中插入字符
erase在str中删除字符
find_first_of找到其中任意一个字符,并返回其位置
find_last_of

4.1、push_back、append、operator+=

 push_back 在字符串尾部插入字符,具体用法如下:

 append 在字符串尾部插入字符串,具体用法如下:

 相比较于以上两种接口,最简单且最常用的其实是 operator+= ,具体用法如下:

4.2、insert 与 erase

 insert :在字符串的 pos 位置插入字符串或者 n 个字符。

比如在字符串 "world" 的第 0 个位置插入字符串 "hello"

在字符串 "helloworld" 5 个位置插入 1 个字符 ' ' : 

  erase :在字符串的 pos 位置删除 n 个字符。

例如,在字符串 "hello world" 的第 6 个位置删除 1 个字符:

 如果指定的 n 超出了字符串的有效范围,或者不指定 n 的值,就删除到字符串最后的位置。

 

 注意 insert erase 不推荐经常使用,因为他们可能都要挪动数据,效率低下。

4.3、find 与 replace

 find :从字符串的 pos 位置向后寻找指定字符,返回该字符在字符串中的位置,如果没有指定 pos 的值,就使用缺省参数 0 。如果字符串中没有找到指定字符,就返回 npos ,即无符号整型 -1

例如,找到字符串 "hello world" ' ' 的位置:

 找到字符串 "hello world i love you" 中第二个 ' ' 的位置:

 replace :替换字符串 pos 位置, len 长度的字符。

例如,把字符串 "hello world i love you" 中所有的 ' ' 都替换为 "%20"

 这样每次使用 replace 来替换字符,都会扩容空间,为了提高效率,我们可以使用 reserve 来提前开辟空间:

4.4、substr 与 rfind

 substr :在str中从 pos 位置开始,截取 n 个字符,然后将其返回。

例如:打印字符串 "string.cpp" 的后缀:

如果我们不指定 n 的值,就使用缺省参数 npos ,即无符号整型 -1 。 不指定 pos 的值,就是用缺省参数 0

不过也有时,文件的名字中存在多个字符 '.' , 为了寻找文件真正的后缀,我们需要找到最后一个 '.' 的位置。可以使用 rfind :从字符串pos位置开始往前找指定字符,返回该字符所在的位置:

4.5、c_str

 c_str 返回C格式字符串。

打印字符串有如下两种方式:

 其中第一种,s 是自定义类型, "<<" 是自定义类型重载的流插入。第二种 s.c_str() 返回的是C格式字符串的指针,类型为 char* "<<" 是库里面的流插入。如果把 s.c_str() 返回的指针强转成其他类型,就会打印出指针,而不是字符串:

 如果把字符串进行以下处理后,这两种打印方式得到的结果是不同的:

 可知,如果我们使用流插入来打印string对象,会以 size 的大小来打印,不会关注 '\0' 。而使用流插入来打印 char* 类型的指针,就会打印到 '\0' 后结束。

4.6、find_first_of 与 find_last_of

 find_first_of  :在字符串中,从前往后找到其中任意一个字符,并返回其位置。

例如,把一段字符串中所有的 'a'、'b'、'c'、'd' 都替换为 '*'

 find_last_of :在字符串中,从后往前找到其中任意一个字符,并返回其位置。

5、string类非成员函数

函数功能说明
operator+尽量少用,因为传值返回,导致深拷贝效率低
operator>>输入运算符重载
operator<<输出运算符重载
getline (重点)获取一行字符串
relational operators大小比较

5.1、getline

 当我们使用 cin 来提取字符串时,字符串中不能含有空格,因为 cin 在遇到空格、'\n' 等字符时,会默认提取结束。

为了解决这个问题,我们可以使用 getline

int main()
{string str;//cin >> str;getline(cin, str);return 0;
}

关于string类的使用相关内容就讲到这里,希望同学们多多支持,如果有不对的地方欢迎大佬指正,谢谢!

相关文章:

【C++】string类的使用

目录 一、标准库中的string类 二、string类的常用接口 1、string类对象的常见构造 2、string类对象的容量操作 2.1、size 与 length 2.2、capacity 与 reserve 2.3、resize 2.4、总结 3、string类对象的访问及遍历操作 3.1、operator[] 与 at 3.2、begin end 3.3、…...

微服务架构简介

微服务 软件架构是一个包含各种组织的系统组织&#xff0c;这些组件包括 Web服务器, 应用服务器, 数据库,存储, 通讯层), 它们彼此或和环境存在关系。系统架构的目标是解决利益相关者的关注点。 image Conway’s law: Organizations which design systems[...] are constrained…...

【Spring源码】AOP的开端:核心对象创建的准备工作

AOP的核心成员是如何被被加载的&#xff1f;本篇我们主要分析使用xml的逻辑&#xff0c;如果使用注解&#xff0c;增加注解处理类即可&#xff08;ConfigurationClassPostProcessor&#xff09;拿之前分析循环的时候举的例子&#x1f330;&#xff0c;它的日志切面就是通过xml进…...

新号涨粉22w,搞笑博主再次爆火,小红书近期创作趋势是什么?

2月借势元宵、情人节&#xff0c;小红书平台又涌现出哪些黑马博主&#xff1f;品牌在投放种草方面有何亮眼表现&#xff1f;为洞察小红书平台的内容创作趋势及品牌营销策略&#xff0c;新红推出2月月度榜单&#xff0c;从创作者及品牌两方面入手&#xff0c;解析月榜数据&#…...

【C++】30h速成C++从入门到精通(内存管理、函数/类模板)

C内存分布我们先来看一下下面的一段代码相关问题int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] {1, 2, 3, 4};char char2[] "abcd";char* pChar3 "abcd";int* ptr1 (int*)mal…...

自动驾驶决策概况

文章目录1. 第一章行为决策在自动驾驶系统架构中的位置2. 行为决策算法的种类2.1 基于规则的决策算法2.1.1 决策树2.1.2 有限状态机&#xff08;FSM&#xff09;2.1.3 基于本体论&#xff08;Ontologies-based&#xff09;2.2 基于统计的决策算法2.2.1 贝叶斯网络&#xff08;B…...

金山轻维表项目进展自动通知

项目经理作为项目全局把控者&#xff0c;经常要和时间“赛跑”。需要实时了解到目前进展如何&#xff0c;跟进人是那些&#xff1f;哪些事项还未完成&#xff1f;项目整体会不会逾期&#xff1f;特别是在一些大型公司中&#xff0c;优秀的项目经理已经学会使用金山轻维表做项目…...

基于上下文分析的 Python 实时 API 推荐

原文来自微信公众号“编程语言Lab”&#xff1a;基于上下文分析的 Python 实时 API 推荐 搜索关注 “编程语言Lab”公众号&#xff08;HW-PLLab&#xff09;获取更多技术内容&#xff01; 欢迎加入 编程语言社区 SIG-程序分析 参与交流讨论&#xff08;加入方式&#xff1a;添加…...

软件测试-接口测试-代码实现接口测试

文章目录 1.request1.1 request介绍1.2 发送get请求1.3 发送set请求1.4 其他请求方式1.5 传递url参数1.6 响应内容解析1.7 cookie1.8 设置session2.集成UnitTest2.1 接口测试框架开发2.2 案例:使用TPShop项目完成对登录功能的接口测试1.request 1.1 request介绍 概念 基于py…...

中村成洋《垃圾回收的算法与实现》PDF 读书笔记

观前提醒 为了能够锻炼自己&#xff0c;我会查阅大量外文不停的修改内容&#xff0c;少部分会提示成中文。 可能有误&#xff0c;请见谅 提示&#xff1a;若是觉得阅读困难&#xff0c;可以看如下内容 脚本之家可获取&#xff0c;若失效可私信浏览器的沙拉查词扩展&#xf…...

docker 网络模式

docker 网络模式主要分为四种&#xff0c;可以通过docker network ls 查看 ~$ docker network ls NETWORK ID NAME DRIVER SCOPE a51d97d72f10 bridge br…...

数据库开发(一文概括mysql基本知识)

Mysql 是最流行的关系型数据库管理系统&#xff0c;在 WEB 应用方面 MySQL 是最好的 关系型数据库(Relational Database Management System&#xff1a;关系数据库管理系统)应用软件之一。mysql在问开发中&#xff0c;几乎必不可少&#xff0c;因为其他的可能是要收费的&#x…...

【JVM】详解Java内存区域和分配

这里写目录标题一、前言二、运行时数据分区2.1程序计数器(PC)2.2 Java虚拟机栈2.3 本地方法栈2.4 Java堆2.5 方法区2.5.1 运行时常量池2.6 直接内存三、HotSpot虚拟机对象探秘3.1 对象的创建3.2 对象的内存布局3.3 对象的访问定位一、前言 C/C需要自行回收和释放已经没用的对象…...

JAVA开发(史上最完整追本溯源JAVA历史、发展和学习)

(第二次世界大战1931-1945) 世界上最先进的技术往往是由于战争催生&#xff0c;在第二次世界大战中除了飞机&#xff0c;坦克和大炮的武器较量外&#xff0c;在隐秘战线的情报工作其实更为重要&#xff0c;在军队将领来往的电报中&#xff0c;为了防止军事情报的泄漏&#xff…...

Qt 防止程序退出

文章目录摘要QWidgetQML方法 1方法 2关键字&#xff1a; Qt、 eventFilter、 Close、 键盘、 任务管理器摘要 今天要聊得内容还是怎么防止别人关闭我的程序&#xff0c;之前都是在win下面&#xff0c;一般都是用过钩子连捕获键盘事件&#xff0c;完了吧对应的事件忽略&#x…...

【校验码 - 循环冗余校验码CRC】

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 目录 循环冗余校验码 1.多项式 2.CRC编码的组成 3.校验码的生成 4.例题&#xff1a; 循环冗余校验码 广泛地在网络通信及磁盘存储时采用。 1.多项式 在循环冗余校验(CRC)码中&#xff0c;无一例…...

【Rust】一文讲透Rust中的PartialEq和Eq

前言 本文将围绕对象&#xff1a;PartialEq和Eq&#xff0c;以及PartialOrd和Ord&#xff0c;即四个Rust中重点的Compare Trait进行讨论并解释其中的细节&#xff0c;内容涵盖理论以及代码实现。 在正式介绍PartialEq和Eq、以及PartialOrd和Ord之前&#xff0c;本文会首先介绍…...

Vulnhub靶场----9、DC-9

文章目录一、环境搭建二、渗透流程三、思路总结一、环境搭建 DC-9下载地址&#xff1a;https://download.vulnhub.com/dc/DC-9.zip kali&#xff1a;192.168.144.148 DC-9&#xff1a;192.168.144.158 二、渗透流程 1、信息收集nmap -T5 -A -p- -sV -sT 192.168.144.158思路&am…...

使用Containerd搭建K8s集群【v1.25】

[toc] 一、安装要求 在开始之前,部署Kubernetes集群机器需要满足以下几个条件: 一台或多台机器,操作系统 CentOS7.x-86_x64硬件配置:2GB或更多RAM,2个CPU或更多CPU,硬盘30GB或更多集群中所有机器之间网络互通可以访问外网,需要拉取镜像禁止swap分区二、准备环境 角色IP…...

NMT - 构建双语概率词典(Probabilistic dictionaries)

文章目录一、安装依赖包mosesdecoder安装 mgiza二、数据预处理三、训练本文参考&#xff1a;How to train your Bicleaner https://github.com/bitextor/bicleaner/wiki/How-to-train-your-Bicleaner 一、安装依赖包 这个过程主要依赖于 mosesdecodermgiza mosesdecoder git…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...