当前位置: 首页 > news >正文

目标检测-One Stage-YOLOv1

文章目录

  • 前言
  • 一、YOLOv1的网络结构和流程
  • 二、YOLOv1的损失函数
  • 三、YOLOv1的创新点
  • 总结


前言

前文目标检测-Two Stage-Mask RCNN提到了Two Stage算法的局限性:

  • 速度上并不能满足实时的要求

因此出现了新的One Stage算法簇,YOLOv1是目标检测中One Stage方法的开山之作,不同于Two Stage需要先通过RPN网络得到候选区域的方法,YOLOv1将检测建模为一个回归问题,直接在整张图的特征图(Feature Map)上进行目标的定位和分类,因此速度比当时正红的Fast R-CNN快很多。而且,也正是因为YOLOv1看的是全局的信息,把背景误判成目标的错误率比只看候选区的Fast R-CNN低很多,但整体的准确率还是Fast R-CNN高。


提示:以下是本篇文章正文内容,下面内容可供参考

一、YOLOv1的网络结构和流程

  1. 首先将输入图像划分成7 * 7的网格
  2. 使用ImageNet数据集(224大小)对前20层卷积网络进行预训练
  3. 使用PASCAL VOC数据集(448大小)对完整的网络进行对象识别和定位的训练
  4. 对于每个网格都预测2个边框(bounding box),即预测98(7 * 7 * 2)个目标窗口,输出7 * 7 * 2 * 30 的张量。

ps:最后一维为30,包含每个预测框的分类与位置信息:20个类别的概率+2个边框的置信度+2*4(2个边框的位置,每个边框4个参数:x_center, y_center, width, height)

  1. 根据上一步预测出98个目标窗口,使用非极大值抑制NMS去除冗余窗口
    在这里插入图片描述

ps:YOLOv1的最后一层采用线性激活函数,其它层都是Leaky ReLU。训练中采用了drop out和数据增强(data augmentation)来防止过拟合。

二、YOLOv1的损失函数

在这里插入图片描述
可看出由5个部分组成:(真阳样本的中心定位误差、宽高误差、confidence误差),负样本confidence误差,正样本类别误差

  • 可以看到宽高误差先取了平方根,这样可以降低大小对象对差值敏感度的差异
  • 超参数 λ c o o r d = 5 , λ n o o b j = 0.5 \lambda_{coord}=5,\lambda_{noobj}=0.5 λcoord=5λnoobj=0.5,可看出真阳样本位置误差的权重较高,负样本置信度误差权重低

三、YOLOv1的创新点

  1. 去除候选区模块,直接将目标检测任务转换成一个简单的回归问题,大大加快了检测的速度(45fps-155fps)
  2. 由于每个网络预测目标窗口时使用的是全图信息(图片的全局特征),使得false positive比例大幅降低(充分的上下文信息),precision较高

总结

尽管YOLOv1速度提升很多,但是精度较低:

  • 每个格子只能预测一个物体,且仅利用了单尺度特征图,对较小对象和密集型的物体检测不友好
  • 7 * 7的粗糙网格内对目标框不加限制的回归预测,使得定位不够精准
  • 预训练时与实际训练时输入大小不一致,模型需要去适应这种分辨率的转换,会影响最终精度

相关文章:

目标检测-One Stage-YOLOv1

文章目录 前言一、YOLOv1的网络结构和流程二、YOLOv1的损失函数三、YOLOv1的创新点总结 前言 前文目标检测-Two Stage-Mask RCNN提到了Two Stage算法的局限性: 速度上并不能满足实时的要求 因此出现了新的One Stage算法簇,YOLOv1是目标检测中One Stag…...

PHP序列化总结3--反序列化的简单利用及案例分析

反序列化中生成对象里面的值,是由反序列化里面的值决定,与原类中预定义的值的值无关,穷反序列化的对象可以使用类中的变量和方法 案例分析 反序列化中的值可以覆盖原类中的值 我们创建一个对象,对象创建的时候触发了construct方…...

大一C语言程序细节复盘2

7-4 学生成绩排序 分数 27 全屏浏览题目 切换布局 作者 张泳 单位 浙大城市学院 假设学生的基本信息包括学号、姓名、三门课程成绩以及个人平均成绩&#xff0c;定义一个能够表示学生信息的结构类型。输入n&#xff08;n<50&#xff09;个学生的成绩信息&#xff0c;按照学生…...

【QT】跨平台区分32位和64位的宏

目录 0.背景 1.详细 0.背景 项目用到&#xff0c;原用的是 “WIN32”和“WIN64”,但是发现在64位下的时候&#xff0c;进了表示32位的代码&#xff0c;上网查找&#xff0c;原来是宏写错了&#xff0c;特此记录&#xff0c;适用windows和linux 1.详细 修改前&#xff1a; #…...

对抗AUTOMIXUP

文章目录 摘要1、简介2、相关工作3、ADAUTOMIX3.1、深度学习分类器3.2、生成器3.3 对抗增强3.3.1 对抗损失 3.4 对抗优化 4、实验4.1、分类结果4.1.1、数据集分类4.1.2、精细分类 4.2、校准4.3、鲁棒性4.4、遮挡鲁棒性4.5、迁移学习4.6、消融实验 5、结论附录AA.1 数据集信息A.…...

AMEYA360:什么是热敏电阻 热敏电阻基础知识详解

热敏电阻(thermistor)是对温度敏感的一种电子器件&#xff0c;其电阻值会随着温度的变化而发生改变。 热敏电阻按照温度系数不同分为正温度系数热敏电阻(PTC thermistor&#xff0c;即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor&#…...

RedisTemplate自增时保证原子性的lua脚本限制接口请求频率

场景&#xff1a;限制请求后端接口的频率&#xff0c;例如1秒钟只能请求次数不能超过10次&#xff0c;通常的写法是&#xff1a; 1.先去从redis里面拿到当前请求次数 2.判断当前次数是否大于或等于限制次数 3.当前请求次数小于限制次数时进行自增 这三步在请求不是很密集的时…...

《通信基站绿色低碳服务评价技术要求》团体标准顺利通过技术审查

2023年12月14日团体标准《通信基站绿色低碳服务评价技术要求》召开了技术审查视频会议。来自节能权威机构、科研院校、通信行业企业的专家以及标准编制组代表参加了本次会议。 技术审查专家组由郑州大学能动学院教授赵金辉、国家节能中心节能技术推广处处长辛升、中国标准化研…...

堆排序(C语言版)

一.堆排序 堆排序即利用堆的思想来进行排序&#xff0c;总共分为两个步骤&#xff1a; 1. 建堆 升序&#xff1a;建大堆 降序&#xff1a;建小堆 2. 利用堆删除思想来进行排序 1.1.利用上下调整法实现堆排序 第一步&#xff1a;建堆 好了&#xff0c;每次建堆都要问自己…...

实现区域地图散点图效果,vue+echart地图+散点图

需求&#xff1a;根据后端返回的定位坐标数据实现定位渲染 1.效果图 2.准备工作,在main.js和index.js文件中添加以下内容 main.js app.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M…...

Kubernetes 学习总结(41)—— 云原生容器网络详解

背景 随着网络技术的发展&#xff0c;网络的虚拟化程度越来越高&#xff0c;特别是云原生网络&#xff0c;叠加了物理网络、虚机网络和容器网络&#xff0c;数据包在网络 OSI 七层网络模型、TCP/IP 五层网络模型的不同网络层进行封包、转发和解包。网络数据包跨主机网络、容器…...

多人协同开发git flow,创建初始化项目版本

文章目录 多人协同开发git flow&#xff0c;创建初始化项目版本1.gitee创建组织模拟多人协同开发2.git tag 打标签3.git push origin --tags 多人协同开发git flow&#xff0c;创建初始化项目版本 1.gitee创建组织模拟多人协同开发 组织中新建仓库 推送代码到我们组织的仓库 2…...

「Kafka」入门篇

「Kafka」入门篇 基础架构 Kafka 快速入门 集群规划 集群部署 官方下载地址&#xff1a;http://kafka.apache.org/downloads.html 解压安装包&#xff1a; [atguiguhadoop102 software]$ tar -zxvf kafka_2.12-3.0.0.tgz -C /opt/module/修改解压后的文件名称&#xff1a; [a…...

PHP8的JIT(Just-In-Time)编译器是什么?

PHP8的JIT&#xff08;Just-In-Time&#xff09;编译器是什么&#xff1f; PHP8是最新的PHP版本&#xff0c;引入了JIT&#xff08;Just-In-Time&#xff09;编译器&#xff0c;以进一步提高性能和执行速度。 JIT编译器是一种在运行时将解释性语言转化为机器码的技术。在过去…...

【C++对于C语言的扩充】C++与C语言的联系,命名空间、C++中的输入输出以及缺省参数

文章目录 &#x1f680;前言&#x1f680;C有何过C之处&#xff1f;&#x1f680;C中的关键字&#x1f680;命名空间✈️为什么要引入命名空间&#xff1f;✈️命名空间的定义✈️如何使用命名空间中的内容呢&#xff1f; &#x1f680;C中的输入和输出✈️C标准库的命名空间✈…...

Excel中部分sheet页隐藏并设置访问密码

1、新建sheet1 2、新建sheet2 3、隐藏sheet2 4、保护工作簿、输密码 5、密码二次确认 6、隐藏的sheet2已经查看不了 7、想要查看时&#xff0c;按图示输入原密码即可 8、查看sheet2内容...

从零开始配置pwn环境:CTF PWN 做题环境

前期在kali2023环境安装的pwndocker使用发现不好用&#xff0c;so找了网上配置好pwn环境的虚拟机。 GitHub - giantbranch/pwn-env-init: CTF PWN 做题环境一键搭建脚本 可以直接下载我配置好的Ubuntu 16.04&#xff0c;为VMware导出的ovf格式 链接&#xff1a;百度网盘 请输…...

Vue3复习笔记

目录 挂载全局属性和方法 v-bind一次绑定多个值 v-bind用在样式中 Vue指令绑定值 Vue指令绑定属性 动态属性的约束 Dom更新时机 ”可写的“计算属性 v-if与v-for不建议同时使用 v-for遍历对象 数组变化检测 事件修饰符 v-model用在表单类标签上 v-model还可以绑定…...

【OpenCV】OpenCV:计算机视觉的强大工具库

摘要   OpenCV是一个广泛应用于计算机视觉领域的开源工具库&#xff0c;为开发者提供了丰富的图像处理和计算机视觉算法。本文将介绍OpenCV的功能和应用领域&#xff0c;并探讨它在实践中的重要性和前景。 计算机视觉的强大工具库 一、什么是OpenCV&#xff1f;二、OpenCV的功…...

spring-boot-autoconfigure误引入spring-boot-starter-data-jpa而导致数据源初始化异常

一、现状描述 某个Grade类引入了jpa的注解&#xff1a; import javax.persistence.Column; import javax.persistence.Embeddable;/*** 年级*/ Embeddable public class Grade {Column(name "code")private int code; }并且pom.xml中引入该jar包&#xff1a;sprin…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...