当前位置: 首页 > news >正文

目标检测-One Stage-YOLOv1

文章目录

  • 前言
  • 一、YOLOv1的网络结构和流程
  • 二、YOLOv1的损失函数
  • 三、YOLOv1的创新点
  • 总结


前言

前文目标检测-Two Stage-Mask RCNN提到了Two Stage算法的局限性:

  • 速度上并不能满足实时的要求

因此出现了新的One Stage算法簇,YOLOv1是目标检测中One Stage方法的开山之作,不同于Two Stage需要先通过RPN网络得到候选区域的方法,YOLOv1将检测建模为一个回归问题,直接在整张图的特征图(Feature Map)上进行目标的定位和分类,因此速度比当时正红的Fast R-CNN快很多。而且,也正是因为YOLOv1看的是全局的信息,把背景误判成目标的错误率比只看候选区的Fast R-CNN低很多,但整体的准确率还是Fast R-CNN高。


提示:以下是本篇文章正文内容,下面内容可供参考

一、YOLOv1的网络结构和流程

  1. 首先将输入图像划分成7 * 7的网格
  2. 使用ImageNet数据集(224大小)对前20层卷积网络进行预训练
  3. 使用PASCAL VOC数据集(448大小)对完整的网络进行对象识别和定位的训练
  4. 对于每个网格都预测2个边框(bounding box),即预测98(7 * 7 * 2)个目标窗口,输出7 * 7 * 2 * 30 的张量。

ps:最后一维为30,包含每个预测框的分类与位置信息:20个类别的概率+2个边框的置信度+2*4(2个边框的位置,每个边框4个参数:x_center, y_center, width, height)

  1. 根据上一步预测出98个目标窗口,使用非极大值抑制NMS去除冗余窗口
    在这里插入图片描述

ps:YOLOv1的最后一层采用线性激活函数,其它层都是Leaky ReLU。训练中采用了drop out和数据增强(data augmentation)来防止过拟合。

二、YOLOv1的损失函数

在这里插入图片描述
可看出由5个部分组成:(真阳样本的中心定位误差、宽高误差、confidence误差),负样本confidence误差,正样本类别误差

  • 可以看到宽高误差先取了平方根,这样可以降低大小对象对差值敏感度的差异
  • 超参数 λ c o o r d = 5 , λ n o o b j = 0.5 \lambda_{coord}=5,\lambda_{noobj}=0.5 λcoord=5λnoobj=0.5,可看出真阳样本位置误差的权重较高,负样本置信度误差权重低

三、YOLOv1的创新点

  1. 去除候选区模块,直接将目标检测任务转换成一个简单的回归问题,大大加快了检测的速度(45fps-155fps)
  2. 由于每个网络预测目标窗口时使用的是全图信息(图片的全局特征),使得false positive比例大幅降低(充分的上下文信息),precision较高

总结

尽管YOLOv1速度提升很多,但是精度较低:

  • 每个格子只能预测一个物体,且仅利用了单尺度特征图,对较小对象和密集型的物体检测不友好
  • 7 * 7的粗糙网格内对目标框不加限制的回归预测,使得定位不够精准
  • 预训练时与实际训练时输入大小不一致,模型需要去适应这种分辨率的转换,会影响最终精度

相关文章:

目标检测-One Stage-YOLOv1

文章目录 前言一、YOLOv1的网络结构和流程二、YOLOv1的损失函数三、YOLOv1的创新点总结 前言 前文目标检测-Two Stage-Mask RCNN提到了Two Stage算法的局限性: 速度上并不能满足实时的要求 因此出现了新的One Stage算法簇,YOLOv1是目标检测中One Stag…...

PHP序列化总结3--反序列化的简单利用及案例分析

反序列化中生成对象里面的值,是由反序列化里面的值决定,与原类中预定义的值的值无关,穷反序列化的对象可以使用类中的变量和方法 案例分析 反序列化中的值可以覆盖原类中的值 我们创建一个对象,对象创建的时候触发了construct方…...

大一C语言程序细节复盘2

7-4 学生成绩排序 分数 27 全屏浏览题目 切换布局 作者 张泳 单位 浙大城市学院 假设学生的基本信息包括学号、姓名、三门课程成绩以及个人平均成绩&#xff0c;定义一个能够表示学生信息的结构类型。输入n&#xff08;n<50&#xff09;个学生的成绩信息&#xff0c;按照学生…...

【QT】跨平台区分32位和64位的宏

目录 0.背景 1.详细 0.背景 项目用到&#xff0c;原用的是 “WIN32”和“WIN64”,但是发现在64位下的时候&#xff0c;进了表示32位的代码&#xff0c;上网查找&#xff0c;原来是宏写错了&#xff0c;特此记录&#xff0c;适用windows和linux 1.详细 修改前&#xff1a; #…...

对抗AUTOMIXUP

文章目录 摘要1、简介2、相关工作3、ADAUTOMIX3.1、深度学习分类器3.2、生成器3.3 对抗增强3.3.1 对抗损失 3.4 对抗优化 4、实验4.1、分类结果4.1.1、数据集分类4.1.2、精细分类 4.2、校准4.3、鲁棒性4.4、遮挡鲁棒性4.5、迁移学习4.6、消融实验 5、结论附录AA.1 数据集信息A.…...

AMEYA360:什么是热敏电阻 热敏电阻基础知识详解

热敏电阻(thermistor)是对温度敏感的一种电子器件&#xff0c;其电阻值会随着温度的变化而发生改变。 热敏电阻按照温度系数不同分为正温度系数热敏电阻(PTC thermistor&#xff0c;即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor&#…...

RedisTemplate自增时保证原子性的lua脚本限制接口请求频率

场景&#xff1a;限制请求后端接口的频率&#xff0c;例如1秒钟只能请求次数不能超过10次&#xff0c;通常的写法是&#xff1a; 1.先去从redis里面拿到当前请求次数 2.判断当前次数是否大于或等于限制次数 3.当前请求次数小于限制次数时进行自增 这三步在请求不是很密集的时…...

《通信基站绿色低碳服务评价技术要求》团体标准顺利通过技术审查

2023年12月14日团体标准《通信基站绿色低碳服务评价技术要求》召开了技术审查视频会议。来自节能权威机构、科研院校、通信行业企业的专家以及标准编制组代表参加了本次会议。 技术审查专家组由郑州大学能动学院教授赵金辉、国家节能中心节能技术推广处处长辛升、中国标准化研…...

堆排序(C语言版)

一.堆排序 堆排序即利用堆的思想来进行排序&#xff0c;总共分为两个步骤&#xff1a; 1. 建堆 升序&#xff1a;建大堆 降序&#xff1a;建小堆 2. 利用堆删除思想来进行排序 1.1.利用上下调整法实现堆排序 第一步&#xff1a;建堆 好了&#xff0c;每次建堆都要问自己…...

实现区域地图散点图效果,vue+echart地图+散点图

需求&#xff1a;根据后端返回的定位坐标数据实现定位渲染 1.效果图 2.准备工作,在main.js和index.js文件中添加以下内容 main.js app.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M…...

Kubernetes 学习总结(41)—— 云原生容器网络详解

背景 随着网络技术的发展&#xff0c;网络的虚拟化程度越来越高&#xff0c;特别是云原生网络&#xff0c;叠加了物理网络、虚机网络和容器网络&#xff0c;数据包在网络 OSI 七层网络模型、TCP/IP 五层网络模型的不同网络层进行封包、转发和解包。网络数据包跨主机网络、容器…...

多人协同开发git flow,创建初始化项目版本

文章目录 多人协同开发git flow&#xff0c;创建初始化项目版本1.gitee创建组织模拟多人协同开发2.git tag 打标签3.git push origin --tags 多人协同开发git flow&#xff0c;创建初始化项目版本 1.gitee创建组织模拟多人协同开发 组织中新建仓库 推送代码到我们组织的仓库 2…...

「Kafka」入门篇

「Kafka」入门篇 基础架构 Kafka 快速入门 集群规划 集群部署 官方下载地址&#xff1a;http://kafka.apache.org/downloads.html 解压安装包&#xff1a; [atguiguhadoop102 software]$ tar -zxvf kafka_2.12-3.0.0.tgz -C /opt/module/修改解压后的文件名称&#xff1a; [a…...

PHP8的JIT(Just-In-Time)编译器是什么?

PHP8的JIT&#xff08;Just-In-Time&#xff09;编译器是什么&#xff1f; PHP8是最新的PHP版本&#xff0c;引入了JIT&#xff08;Just-In-Time&#xff09;编译器&#xff0c;以进一步提高性能和执行速度。 JIT编译器是一种在运行时将解释性语言转化为机器码的技术。在过去…...

【C++对于C语言的扩充】C++与C语言的联系,命名空间、C++中的输入输出以及缺省参数

文章目录 &#x1f680;前言&#x1f680;C有何过C之处&#xff1f;&#x1f680;C中的关键字&#x1f680;命名空间✈️为什么要引入命名空间&#xff1f;✈️命名空间的定义✈️如何使用命名空间中的内容呢&#xff1f; &#x1f680;C中的输入和输出✈️C标准库的命名空间✈…...

Excel中部分sheet页隐藏并设置访问密码

1、新建sheet1 2、新建sheet2 3、隐藏sheet2 4、保护工作簿、输密码 5、密码二次确认 6、隐藏的sheet2已经查看不了 7、想要查看时&#xff0c;按图示输入原密码即可 8、查看sheet2内容...

从零开始配置pwn环境:CTF PWN 做题环境

前期在kali2023环境安装的pwndocker使用发现不好用&#xff0c;so找了网上配置好pwn环境的虚拟机。 GitHub - giantbranch/pwn-env-init: CTF PWN 做题环境一键搭建脚本 可以直接下载我配置好的Ubuntu 16.04&#xff0c;为VMware导出的ovf格式 链接&#xff1a;百度网盘 请输…...

Vue3复习笔记

目录 挂载全局属性和方法 v-bind一次绑定多个值 v-bind用在样式中 Vue指令绑定值 Vue指令绑定属性 动态属性的约束 Dom更新时机 ”可写的“计算属性 v-if与v-for不建议同时使用 v-for遍历对象 数组变化检测 事件修饰符 v-model用在表单类标签上 v-model还可以绑定…...

【OpenCV】OpenCV:计算机视觉的强大工具库

摘要   OpenCV是一个广泛应用于计算机视觉领域的开源工具库&#xff0c;为开发者提供了丰富的图像处理和计算机视觉算法。本文将介绍OpenCV的功能和应用领域&#xff0c;并探讨它在实践中的重要性和前景。 计算机视觉的强大工具库 一、什么是OpenCV&#xff1f;二、OpenCV的功…...

spring-boot-autoconfigure误引入spring-boot-starter-data-jpa而导致数据源初始化异常

一、现状描述 某个Grade类引入了jpa的注解&#xff1a; import javax.persistence.Column; import javax.persistence.Embeddable;/*** 年级*/ Embeddable public class Grade {Column(name "code")private int code; }并且pom.xml中引入该jar包&#xff1a;sprin…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

如何把工业通信协议转换成http websocket

1.现状 工业通信协议多数工作在边缘设备上&#xff0c;比如&#xff1a;PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发&#xff0c;当设备上用的是modbus从站时&#xff0c;采集设备数据需要开发modbus主站&#xff1b;当设备上用的是西门子PN协议时&#xf…...

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot&#xff0c;它能根据上下文补全代码&#xff0c;快速生成常用…...