【数据结构和算法】寻找数组的中心下标
其他系列文章导航
Java基础合集
数据结构与算法合集设计模式合集
多线程合集
分布式合集
ES合集
文章目录
其他系列文章导航
文章目录
前言
一、题目描述
二、题解
2.1 前缀和的解题模板
2.1.1 最长递增子序列长度
2.1.2 寻找数组中第 k 大的元素
2.1.3 最长公共子序列长度
2.1.4 寻找数组中第 k 小的元素
2.2 方法一:前缀和
三、代码
3.2 方法一:前缀和
四、复杂度分析
4.2 方法一:前缀和
前言
这是力扣的 724 题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。
这是一道非常经典的前缀和问题,虽然看似简单,但它却能让你深入理解前缀和的特点。
一、题目描述
给你一个整数数组 nums
,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0
,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1
。
示例 1:
输入:nums = [1, 7, 3, 6, 5, 6] 输出:3 解释: 中心下标是 3 。 左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 , 右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。
示例 2:
输入:nums = [1, 2, 3] 输出:-1 解释: 数组中不存在满足此条件的中心下标。
示例 3:
输入:nums = [2, 1, -1] 输出:0 解释: 中心下标是 0 。 左侧数之和 sum = 0 ,(下标 0 左侧不存在元素), 右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。
提示:
1 <= nums.length <= 104
-1000 <= nums[i] <= 1000
二、题解
2.1 前缀和的解题模板
前缀和算法是一种在处理数组或链表问题时常用的技巧,它可以有效地减少重复计算,提高算法的效率。下面是一些常见的使用前缀和算法的题目以及解题思路:
2.1.1 最长递增子序列长度
题目描述:给定一个无序数组,求最长递增子序列的长度。
解题思路:可以使用前缀和和单调栈来解决这个问题。首先,遍历数组,计算出前缀和。然后,使用单调栈记录当前递增子序列的起始位置。遍历数组时,如果当前元素大于前缀和,说明可以扩展当前递增子序列,将当前位置入栈。如果当前元素小于等于前缀和,说明当前递增子序列已经结束,弹出栈顶元素。最后,栈中剩余的元素即为最长递增子序列的起始位置,计算长度即可。
2.1.2 寻找数组中第 k 大的元素
题目描述:给定一个无序数组和一个整数k,找到数组中第k大的元素。
解题思路:可以使用前缀和和快速选择算法来解决这个问题。首先,计算出数组的前缀和。然后,使用快速选择算法在数组中找到第k小的元素。具体实现中,每次选择一个枢轴元素,将数组分成两部分,小于枢轴的元素和大于枢轴的元素。如果枢轴左边的元素个数小于k,则在左边的子数组中继续查找;如果枢轴左边的元素个数大于等于k,则在右边的子数组中继续查找。最后,当找到第k小的元素时,返回该元素即可。
2.1.3 最长公共子序列长度
题目描述:给定两个字符串,求最长公共子序列的长度。
解题思路:可以使用动态规划算法来解决这个问题。如果字符串长度分别为m和n,则可以定义一个二维数组dp[m+1][n+1],其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。根据动态规划的思想,状态转移方程为dp[i][j] = max(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])。如果s1[i-1]等于s2[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则dp[i][j]取其他两种情况中的较大值。最终结果为dp[m][n]。
2.1.4 寻找数组中第 k 小的元素
题目描述:给定一个无序数组和一个整数k,找到数组中第k小的元素。
解题思路:可以使用前缀和和快速选择算法来解决这个问题。具体实现与寻找第k大元素类似,只不过最后返回的是第k小的元素而非第k大的元素。
2.2 方法一:前缀和
题目仅说明是整数数组,无其他已知条件,因此考虑直接遍历数组。
- 设索引 i 对应变量「左侧元素相加和 leftSum」和「右侧元素相加和 rightSum」。
- 遍历数组 nums ,每轮更新 leftSum 和 rightSum。
- 遍历中,遇到满足 leftSum == rightSum 时,说明当前索引为中心下标,返回即可。
- 若遍历完成,仍未找到「中心下标」,则返回 -1 。
初始化时,相当于索引 i=−1 ,此时 leftSum = 0 , rightSum = 所有元素的和 。
需要考虑大数越界问题。题目给定整数数组 nums ,并给定取值范围。
题目的范围在 int 类型的取值范围内,因此 sum_left 和 sum_right 使用 int 类型即可。
三、代码
3.2 方法一:前缀和
Java版本:
class Solution {public int pivotIndex(int[] nums) {int leftSum = 0, rightSum = Arrays.stream(nums).sum();for (int i = 0; i < nums.length; i++) {rightSum -= nums[i];if (leftSum == rightSum) return i;leftSum += nums[i];}return -1;}
}
C++版本:
class Solution {
public:int pivotIndex(vector<int>& nums) {int leftSum = 0, rightSum = accumulate(nums.begin(), nums.end(), 0);for (int i = 0; i < nums.size(); i++) {rightSum -= nums[i];if (leftSum == rightSum) return i;leftSum += nums[i];}return -1;}
};
Python版本:
class Solution:def pivotIndex(self, nums: List[int]) -> int:left_sum, right_sum = 0, sum(nums)for i in range(len(nums)):right_sum -= nums[i]if left_sum == right_sum:return ileft_sum += nums[i]return -1
Go版本:
package mainfunc pivotIndex(nums []int) int {leftSum := 0rightSum := 0for _, v := range nums {rightSum += v}for i, v := range nums {rightSum -= vif leftSum == rightSum {return i}leftSum += v}return -1
}
四、复杂度分析
4.2 方法一:前缀和
时间复杂度 O(N): 其中 N 为数组 nums 长度。求和操作使用 O(N) 线性时间,遍历 nums 最差使用 O(N) 线性时间。
空间复杂度 O(1): 变量 leftSum , rightSum 使用常数大小空间。
相关文章:

【数据结构和算法】寻找数组的中心下标
其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 前缀和的解题模板 2.1.1 最长递增子序列长度 2.1.2 寻找数组中第 k 大的元素 2.1.3 最长公共子序列…...

多粒度在研究中的应用
FontDiffuser: One-Shot Font Generation via Denoising Diffusion with Multi-Scale Content Aggregation and Style Contrastive Learning 存在的问题 现有的字体生成方法虽然取得了令人满意的性能,但在处理复杂字和风格变化较大的字符(尤其是中文字符)时&#x…...
Docker命令---查看容器日志
介绍 使用docker命令查看容器输出的日志 示例 docker logs 容器ID...

Spring Boot 基于Redisson实现注解式分布式锁
依赖版本 JDK 17 Spring Boot 3.2.0 Redisson 3.25.0 源码地址:Gitee 导入依赖 <properties><redisson.version>3.25.0</redisson.version> </properties><dependencies><dependency><groupId>org.projectlombok</…...
Javascript 正则表达式零宽断言
在介绍正则表达式零宽断言这个概念之前,先看一下以下这道有关 javascript 正则表达式的题目: 登录注册流程是前端最常见的业务流程之一,注册流程少不了密码强弱度校验,请实现对密码的校验,要求满足: 包含大…...
Chocolatey
Chocolatey Software | PHP (Hypertext Preprocessor) 8.3.1 msi安装包https://github.com/chocolatey/choco/releases/download/2.2.2/chocolatey-2.2.2.0.msi 设置/安装 巧克力味Chocolatey CLI (choco)设置/安装 要求 受支持的 Windows 版本Windows …...

雍禾植发成毛发行业标杆!雍禾医疗获“年度医疗大健康消费企业”
近期,以“新视野 新链接”为主题的2023 EDGE AWARDS全球创新评选榜单正式发布。该评选由钛媒体发起,聚焦大健康产业,由权威行业专家、王牌分析师、专业投资机构、用户代表共同评审,兼顾综合专业性、影响力、创新性三大维度评选而出…...
Linux内核--进程管理(十二)共享内存和信号量
目录 一、引言 二、基础知识 三、统一封装的接口 ------>3.1、kern_ipc_perm 四、共享内存的创建和映射 ------>4.1、创建共享内存 ------>4.2、共享内存的映射 五、信号量的创建和使用 ------>5.1、信号量的创建 ------>5.2、信号量的初始化 ------…...
java 构造方法
构造方法 1、什么是构造方法,有什么用? 构造方法是一个比较特殊的方法,通过构造方法可以完成对象的创建,以及实例变量的初始化。 换句话说:构造方法是用来创建对象,并且同时给对象的属性赋值。 注意&#x…...
CISSP 第2章: 人员安全和风险管理概念
第二章 人员安全和风险管理概念 2.1 促进人员安全策略 构建工作描述方面的重要因素包括: 职责分离: 把关键的、重要的和敏感工作任务分配给若干不同的管理员或高级执行者,防止共谋 工作职责:最小特权原则 岗位轮换:提供知识冗余,减少伪造、数据更改、偷…...
前端八股文(CSS篇)一
目录 1.px和em的区别 2.介绍下BFC及其应用 3.介绍下粘性布局(sticky) 4.清除浮动的方法 5.如何用css或js实现多行文本溢出省略效果,考虑兼容 6.如何触发重排和重绘? 7.重绘与重排的区别? 8.说说两种盒模型以及区…...
游戏加速器LSP/DLL导致WSL.EXE无法打开问题修复!
解决办法: https://github.com/microsoft/WSL/issues/4177#issuecomment-597736482 方法一:(管理员身份) netsh winsock reset 方法二: WSCSetApplicationCategory 函数设置LSP加载权限 bool NoLsp(const wchar_t* …...

宏电股份5G RedCap终端产品助力深圳极速先锋城市建设
12月26日,“全城全网,先锋物联”深圳移动5G-A RedCap助力深圳极速先锋城市创新发布会举行,宏电股份携一系列5G RedCap终端产品应邀参与创新发布会,来自全国5G生态圈的各界嘉宾、专家学者济济一堂,共探信息化数字化创新…...
linux top命令中 cpu 利用率/mem 使用率与load average平均负载计算方式
文章目录 1 简介2 CPU% 字段3 MEM% 字段4 load average 平均负载 1 简介 top 命令是 Linux 上一个常用的系统监控工具,它经常用来监控 Linux 的系统状态,是常用的性能分析工具,能够显示较全的系统资源信息,包括系统负载ÿ…...

win11出现安全中心空白和IT管理员已限制对某些区域的访问(不一样的解决方式),真实的个人经历,并且解决经过
1、个人的产生问题的经历 2023年12月22日,由于我买了一块电脑的固态硬盘1T,想要扩容,原来电脑自带512G(由于个人是一个程序员,导致512G实在太古鸡肋)装好以后,想要重装一下系统,来个大清理。结果不出意料&…...
关于安卓重启设备和重启应用进程
android 重启应用进程 //多种方式重启应用进程public class MainActivity {//重启当前Applicationprivate void restartApplication(){final Intent intent getPackageManager().getLaunchIntentForPackage(getPackageName());intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP…...

Linux内核--进程管理(十三)O(1)调度算法
目录 一、引言 二、O(1)调度算法原理 ------>2.1、prio_array 结构 ------>2.2、runqueue 结构 三、实时进程调度 四、普通进程调度 ------>4.1、运行时间片计算 五、O(1)调度算法实现 ------>5.1、时钟中断任务调度 ------>5.2、任务调度 一、引言 …...
【QT】发生的运行时错误汇总
1 、QObject::startTimer: Timers cannot be started from another thread 错误原因:QObject是可重入的,它的大多数非GUI子类,例如QTimer, QTcpSocket, QUdpSocket and QProcess都是可重入的,使得这些类可以同时用于多线程。需要…...

机器学习常用算法模型总结
文章目录 1.基础篇:了解机器学习1.1 什么是机器学习1.2 机器学习的场景1.2.1 模式识别1.2.2 数据挖掘1.2.3 统计学习1.2.4 自然语言处理1.2.5 计算机视觉1.2.6 语音识别 1.3 机器学习与深度学习1.4 机器学习和人工智能1.5 机器学习的数学基础特征值和特征向量的定义…...

笔记中所得(已删减)
1.交流电的一个周期内电压/电流的平均值都为0 2.电动势:电池将单位正电荷由负极搬到正极所做的功 5.额定能量:电池的额定容量乘以标称电压,以Wh为单位 6.500mAh意义是可以以500mA的电流放电1小时 7.电池容量的单位是mAh 13.实际电流源不能串联 14. 15. 16. 17. 18. 19.电…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...