autograd与逻辑回归
一、autograd—自动求导系统
torch.autograd.backward()
torch.autograd.backward()
是PyTorch中用于计算梯度的函数。以下是对该函数的参数的解释:
功能:自动求取梯度
• tensors: 用于求导的张量,如 loss
• retain_graph : 保存计算图
• create_graph : 创建导数计算图,用于高阶求导
• grad_tensors:多梯度权重
tensors
:需要计算梯度的张量或张量的列表。这些张量的requires_grad
属性必须为True
。grad_tensors
:可选参数,用于指定关于tensor
的外部梯度。默认为None
,表示使用默认的梯度为1。retain_graph
:可选参数,用于指定是否保留计算图以供后续计算。默认为None
,表示根据需要自动释放计算图。create_graph
:可选参数,用于指定是否创建计算图以支持高阶梯度计算。默认为False
,表示不创建计算图。
该函数的作用是计算tensors
中张量的梯度,使用链式法则将梯度传播到叶子结点。它会自动构建计算图,并使用反向传播算法计算梯度。
当y = (x + w) * (w + 1),a = x + w,b = w + 1,y = a * b时对于w的梯度的推导如下:
𝜕y/𝜕w = (𝜕y/𝜕a) * (𝜕a/𝜕w) + (𝜕y/𝜕b) * (𝜕b/𝜕w)
= b * 1 + a * 1
= b + a
= (w + 1) + (x + w)
= 2w + x + 1
= 2 * 1 + 2 + 1
= 5
因此,当y = (x + w) * (w + 1)时,对于w的梯度为5。
torch.autograd.grad()
torch.autograd.grad()
是PyTorch中用于计算梯度的函数。以下是对该函数的参数的解释:
功能:求取梯度
• outputs: 用于求导的张量,如 loss
• inputs : 需要梯度的张量
• create_graph : 创建导数计算图,用于高阶求导
• retain_graph : 保存计算图
• grad_outputs:多梯度权重
outputs
:需要计算梯度的标量或标量的列表。这些标量通常是模型的损失函数。inputs
:关于哪些输入变量计算梯度。可以是单个张量或张量的列表。grad_outputs
:可选参数,用于指定关于outputs
的外部梯度。默认为None
,表示使用默认的梯度为1。retain_graph
:可选参数,用于指定是否保留计算图以供后续计算。默认为None
,表示根据需要自动释放计算图。create_graph
:可选参数,用于指定是否创建计算图以支持高阶梯度计算。默认为False
,表示不创建计算图。
该函数的作用是计算outputs
关于inputs
的梯度。它会自动构建计算图,并使用反向传播算法计算梯度。
autograd小贴士:
- 梯度不自动清零
- 依赖于叶子结点的结点,requires_grad默认为True
- 叶子结点不可执行in-place
二、逻辑回归
线性回归是分析自变量x与因变量y(标量)之间关系的方法
逻辑回归是分析自变量x与因变量y(概率)之间关系的方法
相关文章:

autograd与逻辑回归
一、autograd—自动求导系统 torch.autograd.backward() torch.autograd.backward()是PyTorch中用于计算梯度的函数。以下是对该函数的参数的解释: 功能:自动求取梯度 • tensors: 用于求导的张量,如 loss • retain_graph : 保存计算图 •…...

Xshell 从github克隆项目:使用ssh方式。
接上文: https://blog.csdn.net/liu834189447/article/details/135247868 是能克隆项目了,但是速度太磕碜了,磕碜到难以直视。 找到另外一种办法,使用SSH克隆项目 速度嘎嘎猛。 首先得能进得去github网站,不能点上边…...
C++:通过erase删除map的键值对
map是经常使用的数据结构,erase可以删除map中的键值对。 可以通过以下几种方式使用erase 1.通过迭代器进行删除 #include <iostream> #include <map> #include <string> using namespace std;void pMap(const string& w, const auto& m) {cout&l…...

华为月薪25K的自动化测试工程师到底要会那些技能!
前言 3年自动化测试软件测试工程师职业生涯中,我所经历过的项目都是以自动化测试为主的。由于自动化测试是一个广泛的领域,我将自己的经验整理了一下分享给大家,话不多说,直接上干货。 自动化测试的目标和实践选择合适的自动化…...

diffusers 源码待理解之处
一、训练DreamBooth时,相关代码的细节小计 ** class_labels timesteps 时,模型的前向传播怎么走?待深入去看 ** 利用class_prompt去生成数据,而不是instance_prompt class DreamBoothDataset(Dataset):"""A dat…...

正则表达式 详解,10分钟学会
大家好,欢迎来到停止重构的频道。 本期我们讨论正则表达式。 正则表达式是一种用于匹配和操作文本的工具,常用于文本查找、文本替换、校验文本格式等场景。 正则表达式不仅是写代码时才会使用,在平常使用的很多文本编辑软件,都…...
【排序算法】归并排序与快速排序:深入解析与比较
文章目录 1. 引言2. 归并排序(Merge Sort)3. 快速排序(Quick Sort)4. 归并排序与快速排序的比较5. 结论 1. 引言 排序算法是计算机科学中最基本且至关重要的概念之一。它们不仅是理解更复杂算法和数据结构的基石,而且…...

万字长文谈自动驾驶bev感知(一)
文章目录 prologuepaper listcamera bev :1. Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D2. M2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Birds-Eye View Representation3. BEVDet: High-Pe…...
cfa一级考生复习经验分享系列(十七)
考场经验: 1.本人在Prometric广州考试中心,提前一天在附近住下,地方比较好找,到了百汇广场北门,进去就可以看见电梯直达10楼。进去之后需要现场检查行程卡和健康码,然后会问最近你有没有发烧咳嗽等问题&…...

机器人活动区域 - 华为OD统一考试
OD统一考试 题解: Java / Python / C++ 题目描述 现有一个机器人,可放置于 M x N 的网格中任意位置,每个网格包含一个非负整数编号,当相邻网格的数字编号差值的绝对值小于等于 1 时机器人可以在网格间移动。 问题: 求机器人可活动的最大范围对应的网格点数目。 说明: 网格…...

三、HTML元素
一、HTML元素 HTML 文档由 HTML 元素定义。 *开始标签常被称为起始标签(opening tag),结束标签常称为闭合标签(closing tag)。 二、HTML 元素语法 HTML 元素以开始标签起始。HTML 元素以结束标签终止。元素的内容是…...
置顶> 个人学习记录一览
个人学习记录一览表 写个说明 知识学的好,不如笔记记得好,知识点的遗忘在所难免,这里记录我个人的学习过程,以备后面二次学习使用。 Linux 操作系统 Linux 操作系统 001-介绍 Linux 操作系统 002-VMware Workstation的相关操…...
c++重载操作符
支持重载操作符是c的一个特性,先不管好不好用,这起码能让它看起来比其他语言NB很多,但真正了解重载操作符后,就会发现这个特性...就这?本文分两个部分 重载操作符简介和使用——适用新手重载操作符的原理和sao操作——…...

C# 如何读取Excel文件
当处理Excel文件时,从中读取数据是一个常见的需求。通过读取Excel数据,可以获取电子表格中包含的信息,并在其他应用程序或编程环境中使用这些数据进行进一步的处理和分析。本文将分享一个使用免费库来实现C#中读取Excel数据的方法。具体如下&…...
Vue2面试题:说一下对vuex的理解?
五种状态: state: 存储公共数据 this.$store.state mutations:同步操作,改变store的数据 this.$store.commit() actions: 异步操作,让mutations中的方法能在异步操作中起作用 this.$store.dispatch() getters: 计算属性 th…...

elasticsearch系列五:集群的备份与恢复
概述 前几篇咱们讲了es的语法、存储的优化、常规运维等等,今天咱们看下如何备份数据和恢复数据。 在传统的关系型数据库中我们有多种备份方式,常见有热备、冷备、全量定时增量备份、通过开发程序备份等等,其实在es中是一样的。 官方建议采用s…...

【Elasticsearch源码】 分片恢复分析
带着疑问学源码,第七篇:Elasticsearch 分片恢复分析 代码分析基于:https://github.com/jiankunking/elasticsearch Elasticsearch 8.0.0-SNAPSHOT 目的 在看源码之前先梳理一下,自己对于分片恢复的疑问点: 网上对于E…...

elasticsearch如何操作索引库里面的文档
上节介绍了索引库的CRUD,接下来操作索引库里面的文档 目录 一、添加文档 二、查询文档 三、删除文档 四、修改文档 一、添加文档 新增文档的DSL语法如下 POST /索引库名/_doc/文档id(不加id,es会自动生成) { "字段1":"值1", "字段2&q…...

opencv期末练习题(2)附带解析
图像插值与缩放 %matplotlib inline import cv2 import matplotlib.pyplot as plt def imshow(img,grayFalse,bgr_modeFalse):if gray:img cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)plt.imshow(img,cmap"gray")else:if not bgr_mode:img cv2.cvtColor(img,cv2.COLOR_B…...

【Mybatis】深入学习MyBatis:高级特性与Spring整合
🍎个人博客:个人主页 🏆个人专栏: Mybatis ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 高级特性 1 一级缓存和二级缓存 一级缓存 二级缓存 2 延迟加载 5 整合Spring 1 MyBatis-Spring模块 2 事务管理 结…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...