当前位置: 首页 > news >正文

基于深度学习的交通标志图像分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

2. 交通标志数据集读取

        数据集里面的图像具有不同大小,光照条件,遮挡情况下的43种不同交通标志符号,图像的成像情况与你实际在真实环境中不同时间路边开车走路时看到的交通标志的情形非常相似。训练集包括大约39,000个图像,而测试集大约有12,000个图像。图像不能保证是固定 的尺寸,标志不一定在每个图像中都是居中。每个图像包含实际交通标志周围10%左右的边界。

folders = os.listdir(train_path)train_number = []
class_num = []for folder in folders:train_files = os.listdir(train_path + '/' + folder)train_number.append(len(train_files))class_num.append(classes[int(folder)])# 不同类别交通标志数量,并进行排序
zipped_lists = zip(train_number, class_num)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
train_number, class_num = [ list(t) for t in  tuples]# 绘制不同类别交通标志数量分布柱状图
plt.figure(figsize=(21,10))  
plt.bar(class_num, train_number)
plt.xticks(class_num, rotation='vertical', fontsize=16)
plt.title('不同类别交通标志数量分布柱状图', fontsize=20)
plt.show()

         划分训练集、验证集:

X_train, X_val, y_train, y_val = train_test_split(image_data, image_labels, test_size=0.3, random_state=42, shuffle=True)X_train = X_train/255 
X_val = X_val/255print("X_train.shape", X_train.shape)
print("X_valid.shape", X_val.shape)
print("y_train.shape", y_train.shape)
print("y_valid.shape", y_val.shape)

        类别标签进行 One-hot 编码:

y_train = keras.utils.to_categorical(y_train, NUM_CATEGORIES)
y_val = keras.utils.to_categorical(y_val, NUM_CATEGORIES)print(y_train.shape)
print(y_val.shape)

3. 卷积神经网络模型构建

model = keras.models.Sequential([    keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu', input_shape=(IMG_HEIGHT,IMG_WIDTH,channels)),keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu'),# ......keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu'),# ......keras.layers.Flatten(),keras.layers.Dense(512, activation='relu'),keras.layers.BatchNormalization(),keras.layers.Dropout(rate=0.5),keras.layers.Dense(43, activation='softmax')
])

4. 模型训练与性能评估

        设置模型训练参数:

epochs = 20initial_learning_rate = 5e-5lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, #设置初始学习率decay_steps=64,      #每隔多少个step衰减一次decay_rate=0.98,     #衰减系数staircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_val, y_val))

        加载测试集进行模型评估: 

# 计算测试集准确率
pred = model.predict(X_test)
pred_labels = np.argmax(pred, 1)print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)
测试集准确率:  93.24623911322249

5. 基于迁移学习的交通标志识别

from tensorflow.keras.applications import VGG16height = 32
width = 32vgg_base_model = VGG16(weights='imagenet', include_top=False, input_shape=(height,width,3))
vgg_base_model.trainable=Truevgg_model = tf.keras.Sequential([vgg_base_model,keras.layers.BatchNormalization(),keras.layers.Flatten(),keras.layers.Dense(512, activation='relu'),keras.layers.BatchNormalization(),keras.layers.Dropout(rate=0.5),keras.layers.Dense(43, activation='softmax')])vgg_model.summary()

Epoch 1/20
858/858 [==============================] - ETA: 0s - loss: 0.9774 - accuracy: 0.7366
Epoch 1: val_accuracy improved from -inf to 0.94806, saving model to best_model.h5
858/858 [==============================] - 334s 387ms/step - loss: 0.9774 - accuracy: 0.7366 - val_loss: 0.1651 - val_accuracy: 0.9481
Epoch 2/20
858/858 [==============================] - ETA: 0s - loss: 0.0737 - accuracy: 0.9804
Epoch 2: val_accuracy improved from 0.94806 to 0.97866, saving model to best_model.h5
858/858 [==============================] - 350s 408ms/step - loss: 0.0737 - accuracy: 0.9804 - val_loss: 0.0750 - val_accuracy: 0.9787
Epoch 3/20
858/858 [==============================] - ETA: 0s - loss: 0.0274 - accuracy: 0.9926
Epoch 3: val_accuracy improved from 0.97866 to 0.98266, saving model to best_model.h5
858/858 [==============================] - 351s 409ms/step - loss: 0.0274 - accuracy: 0.9926 - val_loss: 0.0681 - val_accuracy: 0.9827
Epoch 4/20
858/858 [==============================] - ETA: 0s - loss: 0.0197 - accuracy: 0.9946
Epoch 4: val_accuracy improved from 0.98266 to 0.99779, saving model to best_model.h5
858/858 [==============================] - 339s 395ms/step - loss: 0.0197 - accuracy: 0.9946 - val_loss: 0.0085 - val_accuracy: 0.9978
Epoch 5/20
858/858 [==============================] - ETA: 0s - loss: 0.0081 - accuracy: 0.9982
Epoch 5: val_accuracy improved from 0.99779 to 0.99830, saving model to best_model.h5
858/858 [==============================] - 364s 424ms/step - loss: 0.0081 - accuracy: 0.9982 - val_loss: 0.0067 - val_accuracy: 0.9983
Epoch 6/20
858/858 [==============================] - ETA: 0s - loss: 0.0025 - accuracy: 0.9995
Epoch 6: val_accuracy improved from 0.99830 to 0.99855, saving model to best_model.h5
858/858 [==============================] - 354s 413ms/step - loss: 0.0025 - accuracy: 0.9995 - val_loss: 0.0053 - val_accuracy: 0.9986
Epoch 7/20
858/858 [==============================] - ETA: 0s - loss: 0.0030 - accuracy: 0.9992
Epoch 7: val_accuracy did not improve from 0.99855
858/858 [==============================] - 333s 389ms/step - loss: 0.0030 - accuracy: 0.9992 - val_loss: 0.0126 - val_accuracy: 0.9969
Epoch 7: early stopping 

         模型评估:

# 计算测试集准确率
pred = vgg_model.predict(X_test)
pred_labels = np.argmax(pred, 1)print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)

         测试集准确率: 96.02533650039588

6. 测试集预测结果可视化

plt.figure(figsize = (25, 25))start_index = 0
for i in range(25):plt.subplot(5, 5, i + 1)plt.grid(False)plt.xticks([])plt.yticks([])prediction = pred_labels[start_index + i]actual = labels[start_index + i]col = 'g'if prediction != actual:col = 'r'plt.xlabel('实际类别:{}\n预测类别:{}'.format(classes[actual], classes[prediction]), color = col, fontsize=18)plt.imshow(X_test[start_index + i])
plt.show()

7. 交通标志分类识别系统

7.1 首页

7.2 交通标志在线识别

8. 结论

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

相关文章:

基于深度学习的交通标志图像分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习…...

使用uni-app editor富文本组件设置富文本内容及解决@Ready先于onload执行,无法获取后端接口数据的问题

开始使用富文本组件editor时,不知如何调用相关API设置富文本内容和获取内容,本文将举例详解 目录 一.了解editor组件的常用属性及相关API 1.属性常用说明 2.富文本相关API说明 1)editorContext 2) editorContext.setContents…...

Spring高手之路-Spring事务的传播机制(行为、特性)

目录 含义 七种事务传播机制 1.REQUIRED(默认) 2.REQUIRES_NEW 3.SUPPORTS 4.NOT_SUPPORTED 5.MANDATORY 6.NEVER 7.NESTED 含义 Spring事务的传播机制是指在多个事务方法相互调用时,如何处理这些事务的传播行为。对应七种事务传播行为…...

简易机器学习笔记(八)关于经典的图像分类问题-常见经典神经网络LeNet

前言 图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层次视觉任务的基础。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和…...

pytest conftest通过fixture实现变量共享

conftest.py scope"module" 只对当前执行的python文件 作用 pytest.fixture(scope"module") def global_variable():my_dict {}yield my_dict test_case7.py import pytestlist1 []def test_case001(global_variable):data1 123global_variable.u…...

系列五、搭建Naco(集群版)

一、搭建Naco(集群版) 1.1、前置说明 (1)64位Red Hat7 Linux 系统; (2)64位JDK1.8;备注:如果没有安装JDK,请参考【系列二、Linux中安装JDK】 (3&…...

JavaScript中alert、prompt 和 confirm区别及使用【通俗易懂】

✨前言✨   本篇文章主要在于,让我们看几个与用户交互的函数:alert,prompt 和confirm的使用及区别 🍒欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍒博主将持续更新学习记录收获&…...

【GoLang入门教程】Go语言几种标准库介绍(四)

编程语言的未来? 文章目录 编程语言的未来?前言几种库fmt库 (格式化操作)关键函数:示例 Go库标准库第三方库示例 html库(HTML 转义及模板系统)主要功能:示例 总结专栏集锦写在最后 前言 上一篇,我们介绍了debug、enco…...

面试算法:快速排序

题目 快速排序是一种非常高效的算法,从其名字可以看出这种排序算法最大的特点就是快。当表现良好时,快速排序的速度比其他主要对手(如归并排序)快2~3倍。 分析 快速排序的基本思想是分治法,排序过程如下…...

航空业数字化展翅高飞,开源网安专业服务保驾护航

​某知名航空公司是中国首批民营航空公司之一,运营国内外航线200多条,也是国内民航最高客座率的航空公司之一。在数字化发展中,该航空公司以数据驱动决策,通过精细化管理、数字创新和模式优化等方式,实现了精准营销和个…...

SpringBoot学习(三)-员工管理系统开发(重在理解)

注:此为笔者学习狂神说SpringBoot的笔记,其中包含个人的笔记和理解,仅做学习笔记之用,更多详细资讯请出门左拐B站:狂神说!!! 本文是基于狂神老师SpringBoot教程中的员工管理系统从0到1的实践和理解。该系统应用SpringB…...

2 Windows网络编程

1 基础概念 1.1 socket概念 Socket 的原意是“插座”,在计算机通信领域,socket 被翻译为“套接字”,它是计算机之间进行通信的一种约定或一种方式。Socket本质上是一个抽象层,它是一组用于网络通信的API,包括了一系列…...

uniapp选择android非图片文件的方案踩坑记录

这个简单的问题我遇到下面6大坑,原始需求是选择app如android的excel然后读取到页面并上传表格数据json 先看看效果 uniapp 选择app excel文件读取 1.uniapp自带不支持 uniapp选择图片和视频非常方便自带已经支持可以直接上传和读取 但是选择word excel的时候就出现…...

前端发开的性能优化 请求级:请求前(资源预加载和预读取)

预加载 预加载:是优化网页性能的重要技术,其目的就是在页面加载过程中先提前请求和获取相关的资源信息,减少用户的等待时间,提高用户的体验性。预加载的操作可以尝试去解决一些类似于减少首次内容渲染的时间,提升关键资…...

B01、类加载子系统-02

JVM架构图-英文版 中文版见下图: 1、概述类的加载器及类加载过程 1.1、类加载子系统的作用 类加载器子系统负责从文件系统或者网络中加载Class文件,class文件在文件开头有特定的文件标识。ClassLoader只负责class文件的加载,至于它是否可以运行,则由Execution Engi…...

用PHP搭建一个绘画API

【腾讯云AI绘画】用PHP搭建一个绘画API 大家好!今天我要给大家推荐的是如何用PHP搭建一个绘画API,让你的网站或应用瞬间拥有强大的绘画能力!无论你是想要让用户在网页上绘制自己的创意,还是想要实现自动绘画生成特效,这…...

西安人民检察院 | OLED翻页查询一体机

产品:55寸OLED柔性屏 项目时间:2023年12月 项目地点:西安 在2023年12月,西安人民检察院引入了OLED翻页查询一体机,为来访者提供了一种全新的信息查询方式。 这款一体机采用55寸OLED柔性屏,具有高清晰度、…...

superset利用mysql物化视图解决不同数据授权需要写好几次中文别名的问题

背景 在使用superset时,给不同的人授权不同的数据,需要不同的数据源,可视化字段希望是中文,所以导致不同的人需要都需要去改表的字段,因此引入视图,将视图中字段名称设置为中文 原表数据 select * from …...

输入输出流

1.输入输出流 输入/输出流类:iostream---------i input(输入) o output(输出) stream:流 iostream: istream类:输入流类-------------cin:输入流类的对象 ostream类…...

IOS:Safari无法播放MP4(H.264编码)

一、问题描述 MP4使用H.264编码通常具有良好的兼容性,因为H.264是一种广泛支持的视频编码标准。它可以在许多设备和平台上播放,包括电脑、移动设备和流媒体设备。 使用caniuse查询H.264兼容性,看似确实具有良好的兼容性: 然而…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...