数据结构:第7章:查找(复习)
目录
顺序查找:
折半查找:
二叉排序树:
4. (程序题)
平衡二叉树:
顺序查找:
ASL=
折半查找:
这里 j 表示 二叉查找树的第 j 层
二叉排序树:
二叉排序树(Binary Search Tree,BST)是一种特殊的二叉树,定义:
- 对于二叉排序树的每个节点,其左子树的所有节点的值都小于该节点的值。
- 对于二叉排序树的每个节点,其右子树的所有节点的值都大于该节点的值。
- 对于二叉排序树的每个节点,其左右子树也分别是二叉排序树。
可以发现二叉排序树的定义时递归定义。
这些性质保证了对于二叉排序树中的任意节点,其左子树的节点值小于它,右子树的节点值大于它,从而形成了一种有序的结构。
二叉排序树的有序性质使得在其中进行查找、插入和删除等操作时具有较高的效率。对于给定的值,可以通过比较节点的值,按照二叉排序树的性质在树中快速定位所需的节点。
二叉排序树的难点在于删除树中的某个值。删除某个键值为 key 的节点时,有三中情况要考虑:
1.该节点 r 的左孩子为空:r=r->lch;
2.该节点 r 的右孩子为空:l=l->rch;
3.该节点的左右孩子均不位空:选择左孩子中 key 值最大的节点替换 r;
4. (程序题)
二叉排序树插入、删除
键盘输入若干整型数据,以0做结束,利用二叉排序树的插入算法创建二叉排序树,并中序遍历该二叉树。之后输入一个整数x,在二叉排序树中查找,若找到则输出“该数存在”,否则输出“该数不存在”;再输入一个要删除的一定存在的整数y,完成在该二叉树中删除y的操作,并输出删除y后的二叉树中序遍历的结果。
输出数据之间用一个空格分隔。
输入:
1 5 4 2 3 6 8 7 9 11 14 13 12 16 19 0
输出:
1 2 3 4 5 6 7 8 9 11 12 13 14 16 19
输入:
19
输出:
该数存在
输入:
14
输出:
1 2 3 4 5 6 7 8 9 11 12 13 16 19
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef long long LL;typedef struct Info {int key;
}Info;typedef struct Node {Info data;struct Node* lch;struct Node* rch;
}Node,*Tree;void print(Tree& r) {if (r == NULL)return;print(r->lch);cout << r->data.key << " ";print(r->rch);
}void Insert(Tree& r, int key) {if (r == NULL) {Node* p = new Node;p->data.key = key;p->rch = p->lch = NULL;r = p;}else if(r->data.key<key) {Insert(r->rch, key);}else {Insert(r->lch, key);}
}void build(Tree& r) {int in;cin >> in;while (in) {Insert(r, in);cin >> in;}
}int search(Tree& r, int key) {if (r == NULL)return 0;if (r->data.key == key) {return 1;}if (r->data.key < key) {if (search(r->rch, key))return 1;}else {if (search(r->lch, key))return 1;}return 0;
}int del(Tree& r, int key) {if (r == NULL)return 0;if (r->data.key == key) {if (r->lch == NULL) {r =r->rch;}else if (r->rch == NULL) {r =r->lch;}else {//cout << r->data.key << endl;Node* p = r->lch;Node* fa = r;while (p->rch != NULL) {fa = p;p = p->rch;}Node* t = r;if (fa != r)fa->rch = p->lch;if (r->lch != p)p->lch = r->lch;p->rch = r->rch;//cout << p->data.key << endl;r = p;delete t;}return 1;}if (r->data.key < key) {if (del(r->rch, key))return 1;}else {if (del(r->lch, key))return 1;}return 0;
}int main() {Node* root = NULL;build(root);print(root);int in;cin >> in;if (search(root, in)) {cout << "该数存在" << endl;}else {cout << "该数不存在" << endl;}cin >> in;del(root, in);print(root);return 0;
}
用例1:
输入
1 5 4 2 3 6 8 7 9 11 14 13 12 16 19 0 19 14
输出
1 2 3 4 5 6 7 8 9 11 12 13 14 16 19 该数存在 1 2 3 4 5 6 7 8 9 11 12 13 16 19
用例2:
输入
10 9 8 7 11 12 13 14 0 14 8
输出
7 8 9 10 11 12 13 14 该数存在 7 9 10 11 12 13 14
用例3:
输入
23 45 67 21 12 15 9 10 55 0 19 9
输出
9 10 12 15 21 23 45 55 67 该数不存在 10 12 15 21 23 45 55 67
平衡二叉树:
平衡二叉树的定义
平衡二叉排序树查找算法的性能取决于二叉树的结构,而二叉树的形状则取决于其数据集。
如果数据呈有序排列,则二叉排序树是线性的,查找的时间复杂度为O(n);反之,如果二叉排序
树的结构合理,则查找速度较快,查找的时间复杂度为O(logn)。事实上,树的高度越小,查找
速度越快。因此,希望二叉树的高度尽可能小。本节将讨论一种特殊类型的二叉排序树,称为平
衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree),因由前苏联数学家 Adelson-Velskii 和
Landis 提出,所以又称AVL树。
平衡二叉树或者是空树,或者是具有如下特征的二叉排序树:
(1)左子树和右子树的深度之差的绝对值不超过1;
(2)左子树和右子树也是平衡二叉树。
若将二叉树上结点的平衡因子(Balance Factor,BF)定义为该结点左子树和右子树的深度之
差,则平衡二叉树上所有结点的平衡因子只可能是-1、0和1。只要二叉树上有一个结点的平衡
因子的绝对值大于1,则该二叉树就是不平衡的。图7.11(a)所示为两棵平衡二叉树,而图 7.11
(b)所示为两棵不平衡的二叉树,结点中的值为该结点的平衡因子。
平衡二叉树的调整(重难点)
LL型调整操作:由于在A左子树根结点的左子树上插入结点,A的平衡因子由1增至2,致使以A为根的子树失去平衡,则需进行一次向右的顺时针旋转操作
RR 型调整操作:当在 A 的右子树的右子树上插入结点时,A 的平衡因子由 -1 变为 -2,导致以 A 为根结点的子树失去平衡。此时,需要进行一次向左的逆时针旋转操作,将 A 的右子树作为其左子树的右子树,并将 A 作为其左子树的根结点。
LR型调整操作:由于在A的左子树根结点的右子树上插入结点, A的平衡因子由1增至2,致使以A为根结点的子树失去平衡,则需进行两次旋转操作。第一次对B及其右子树进行递时针旋转,C转上去成为B的根,这时变成了LL型,所以第二次进行LL型的顺时针旋转即可恢复平衡。如果C原来有左子树,则调整C的左子树为B的右子树,
RL型调整操作:由于在A的右子树根结点的左子树上插入结点,A的平衡因子由-1变为-2,致使以A 为根结点的子树失去平衡,则旋转方法和LR型相对称,也需进行两次旋转,先顺时针右旋,再逆时针左旋。
左,右旋转调整代码:mp用来记录某个节点的高度
void Turnleft(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->right;A->right = B->left;B->left = A;r = B;mp[r->left] -= 2;mp[r] = mp[r->right] + 1;}void Turnright(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->left;A->left = B->right;B->right = A;r = B;mp[r->right] -= 2;mp[r] = mp[r->left] + 1;}
判断不平衡类型类型的代码:
void fun1(vector<int>& g, TreeNode* r) {if ( r == NULL||(r->left==NULL&&r->right==NULL))return;if (mp[r->left] == mp[r->right])return;g.push_back(mp[r->left] - mp[r->right]);fun1(g, r->left);fun1(g, r->right);}string check(TreeNode* root) {vector<int>g;fun1(g, root);if (g[0] == 2&&g[1]==1)return "LL";else if (g[0] == 2&&g[1]==-1)return "LR";else {if (g[0] == -2&&g[1]==1)return "RL";return "RR";}return "NO";}
建立平衡二叉树的代码
class Solution {
public:unordered_map<TreeNode*, int>mp;void fun1(vector<int>& g, TreeNode* r) {if (r == NULL || (r->left == NULL && r->right == NULL))return;if (mp[r->left] == mp[r->right])return;g.push_back(mp[r->left] - mp[r->right]);fun1(g, r->left);fun1(g, r->right);}string check(TreeNode* root) {vector<int>g;fun1(g, root);if (g[0] == 2 && g[1] == 1)return "LL";else if (g[0] == 2 && g[1] == -1)return "LR";else {if (g[0] == -2 && g[1] == 1)return "RL";return "RR";}return "NO";}void Turnleft(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->right;A->right = B->left;B->left = A;r = B;mp[r->left] -= 2;mp[r] = mp[r->right] + 1;}void Turnright(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->left;A->left = B->right;B->right = A;r = B;mp[r->right] -= 2;mp[r] = mp[r->left] + 1;}void change(TreeNode*& r, string ret) {if (ret == "LL") {Turnright(r);}else if (ret == "RR") {Turnleft(r);}else if (ret == "RL") {Turnright(r->right);Turnleft(r);}else {Turnleft(r->left);Turnright(r);}}void Insert(TreeNode*& r, int key) {if (r == NULL) {TreeNode* p = new TreeNode;p->val = key;p->left = p->right = NULL;r = p;mp[r] = 1;return ;}if (key > r->val) {Insert(r->right, key);}else {Insert(r->left, key);}mp[r] = max(mp[r->left], mp[r->right]) + 1;int h = mp[r->left] - mp[r->right];if (h == 2 || h == -2) {//cout <<" ___________________"<< r->val << endl;string ret = check(r);//cout << ret << endl;change(r, ret);/* for (unordered_map<TreeNode*, int>::iterator it = mp.begin(); it != mp.end(); it++) {if (it->first != NULL) {cout << "KKKK " << it->first->val << " " << it->second << endl;}}cout << "先 ";inorderTraversal1(r);cout << endl;cout << "中 ";inorderTraversal(r);cout << endl;*/}}TreeNode* balanceBST(TreeNode*& root,vector<int>preorder) {for (int i = 0; i <preorder.size(); i++) {Insert(root, preorder[i]);}return root;}
};
完整代码:
代码中有测试样例
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;// Definition for a binary tree node.
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};// Function to insert a value into BST
TreeNode* insertIntoBST(TreeNode* root, int val) {if (!root) {return new TreeNode(val);}if (val < root->val) {root->left = insertIntoBST(root->left, val);}else {root->right = insertIntoBST(root->right, val);}return root;
}// Function to construct BST from preorder traversal
TreeNode* bstFromPreorder(vector<int>& preorder) {TreeNode* root = nullptr;for (int val : preorder) {if (val == 0)continue;root = insertIntoBST(root, val);}return root;
}// Function to perform inorder traversal (for verification)
void inorderTraversal(TreeNode* root) {if (root) {inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}
}
void inorderTraversal1(TreeNode* root) {if (root) {cout << root->val << " ";inorderTraversal1(root->left);inorderTraversal1(root->right);}
}// Function to perform level order traversal
void levelOrderTraversal(TreeNode* root) {if (!root) {return;}queue<TreeNode*> q;q.push(root);while (!q.empty()) {TreeNode* current = q.front();q.pop();cout << current->val << " ";if (current->left) {q.push(current->left);}if (current->right) {q.push(current->right);}}
}class Solution {
public:unordered_map<TreeNode*, int>mp;void fun1(vector<int>& g, TreeNode* r) {if (r == NULL || (r->left == NULL && r->right == NULL))return;if (mp[r->left] == mp[r->right])return;g.push_back(mp[r->left] - mp[r->right]);fun1(g, r->left);fun1(g, r->right);}string check(TreeNode* root) {vector<int>g;fun1(g, root);if (g[0] == 2 && g[1] == 1)return "LL";else if (g[0] == 2 && g[1] == -1)return "LR";else {if (g[0] == -2 && g[1] == 1)return "RL";return "RR";}return "NO";}void Turnleft(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->right;A->right = B->left;B->left = A;r = B;mp[r->left] -= 2;mp[r] = mp[r->right] + 1;}void Turnright(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->left;A->left = B->right;B->right = A;r = B;mp[r->right] -= 2;mp[r] = mp[r->left] + 1;}void change(TreeNode*& r, string ret) {if (ret == "LL") {Turnright(r);}else if (ret == "RR") {Turnleft(r);}else if (ret == "RL") {Turnright(r->right);Turnleft(r);}else {Turnleft(r->left);Turnright(r);}}void Insert(TreeNode*& r, int key) {if (r == NULL) {TreeNode* p = new TreeNode;p->val = key;p->left = p->right = NULL;r = p;mp[r] = 1;return ;}if (key > r->val) {Insert(r->right, key);}else {Insert(r->left, key);}mp[r] = max(mp[r->left], mp[r->right]) + 1;int h = mp[r->left] - mp[r->right];if (h == 2 || h == -2) {//cout <<" ___________________"<< r->val << endl;string ret = check(r);//cout << ret << endl;change(r, ret);/* for (unordered_map<TreeNode*, int>::iterator it = mp.begin(); it != mp.end(); it++) {if (it->first != NULL) {cout << "KKKK " << it->first->val << " " << it->second << endl;}}cout << "先 ";inorderTraversal1(r);cout << endl;cout << "中 ";inorderTraversal(r);cout << endl;*/}}TreeNode* balanceBST(TreeNode*& root,vector<int>preorder) {for (int i = 0; i <preorder.size(); i++) {Insert(root, preorder[i]);}return root;}
};int main() {vector<int> preorder = { 1,2,3,4,5,6,7,8,9,10,31,25,47,16,28,30 };/*1,2,3,4,5,6,7,8,9,1019,10,4,17,531,25,47,40,69,43 1,2,3,4 31,25,47,40,69,36 31,25,47,16,28,26 31,25,47,16,28,30 1,2,3,4,5,6,7,8,9,10,31,25,47,16,28,30*/TreeNode* root = NULL;Solution solve;solve.balanceBST(root,preorder);levelOrderTraversal(root);cout << endl;cout << "先 ";inorderTraversal1(root);cout << endl;cout << "中 ";inorderTraversal(root);cout << endl;return 0;
}
相关文章:

数据结构:第7章:查找(复习)
目录 顺序查找: 折半查找: 二叉排序树: 4. (程序题) 平衡二叉树: 顺序查找: ASL 折半查找: 这里 j 表示 二叉查找树的第 j 层 二叉排序树: 二叉排序树(Binary Search Tree&…...
编程语言的未来?
编程语言的未来? 随着科技的飞速发展,编程语言在计算机领域中扮演着至关重要的角色。它们是软件开发的核心,为程序员提供了与机器沟通的桥梁。那么,在技术不断进步的未来,编程语言的走向又将如何呢? 在技…...

SpringBoot的测试
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开心好久好久😎 📚系列专栏:Java全栈,…...
C++睡眠函数:Windows平台下的Sleep函数和Linux平台的usleep函数
C/C睡眠函数:Windows平台下的Sleep函数和Linux平台的usleep函数 WinAPI Sleep Sleep函数属于Windows API,使用它需要先包含synchapi.h。 void Sleep(DWORD dwMilliseconds);函数仅有一个参数(睡眠时长),单位是毫秒。…...
详解白帽子以及红队、蓝队和紫队
企业继续数字化,其关键基础设施和运营扩大了攻击面,暴露于各种威胁途径的面前。为了解决这个问题,企业领导者认识到拥有内部专家的重要性。考虑到网络威胁领域不断发展的态势,企业领导者可以利用道德黑客以及红队、蓝队和紫队的工…...
1、docker常用技巧:docker数据位置更改
目录 🍅点击这里查看所有博文 随着自己工作的进行,接触到的技术栈也越来越多。给我一个很直观的感受就是,某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了,只有经常会用到的东西才有可能真正记…...
Qt之设置QLabel的背景色和前景色
方法有两种,一种是使用调色板,一种是使用样式表。 方法一:调色板 QPalette palette ; // 设置黑底绿字 palette .setColor(QPalette::Background, Qt::black); palette .setColor(QPalette::WindowText, Qt::green); // 这句不能少,否则没效果 ui->label->setAutoF…...

数模学习day06-主成分分析
主成分分析(Principal Component Analysis,PCA)主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。一般来说当研究的问题涉及到…...

Windows PowerShell的安全目标——安全警报
Windows PowerShell的安全目标——安全警报 1. 保证Shell安全 自从2006年年底PowerShell发布以来,微软在安全和脚本方面并没有取得很好的名声。毕竟那个时候,**VBScript和Windows Script Host(WSH)**是两个最流行的病毒和恶意软件的载体,…...

k8s笔记1- 初步认识k8s
k8s简介: kubernetes,俗称k8是,用于自动部署,扩缩和管理容器化应用程序的开源系统,它将组成应用程序的容器,组合成逻辑单元,便于管理和服务发现。 k8s的作用 自动化上线和回滚、存储编排…...

ARM CCA机密计算软件架构之内存加密上下文(MEC)
内存加密上下文(MEC) 内存加密上下文是与内存区域相关联的加密配置,由MMU分配。 MEC是Arm Realm Management Extension(RME)的扩展。RME系统架构要求对Realm、Secure和Root PAS进行加密。用于每个PAS的加密密钥、调整或加密上下文在该PAS内是全局的。例如,对于Realm PA…...
python基于flask实现一个文本问答系统
from flask import Flask, render_template, requestapp Flask(__name__)# 一个简单的问题-答案映射,实际中可以使用更复杂的存储结构(数据库等) qa_pairs {"什么是人工智能?": "人工智能是模拟人类智能的一种机…...
lambda表达式使用和示例
lambda表达式 什么是lambda 学习lamdba有两个结构十分关键,一个是lamdba自己,另一个是函数式接口 lamdba lamdba表达式本质上就是匿名方法,不能独立运行用于实现函数式接口定义的另一个方法,因此lamdba会产生一个匿名类lamdba…...
STM32学习笔记十八:WS2812制作像素游戏屏-飞行射击游戏(8)探索游戏多样性,范围伤害模式
前面我们的攻击手段比较单一,虽然已经分出了 EnemyT1 / EnemyT2 / EnemyT3, 但里面还是基本一样的。这回,我们尝试实现一些新的攻击方法,实现一些新的算法。 1、前面我们小飞机EnemyT1 的攻击方式是垂直向下发射子弹。 那么大飞机…...

C#获取windows系统资源使用情况
1.前言 之前有一篇博客介绍如何获取Linux服务器上的资源使用情况《Java 获取服务器资源(内存、负载、磁盘容量)》,这里介绍如何通过C#获取Window系统的资源使用。 2.获取服务器资源 2.1.内存 [DllImport("kernel32.dll")][retu…...

PE解释器之PE文件结构
PE文件是由许许多多的结构体组成的,程序在运行时就会通过这些结构快速定位到PE文件的各种资源,其结构大致如图所示,从上到下依次是Dos头、Nt头、节表、节区和调试信息(可选)。其中Dos头、Nt头和节表在本文中统称为PE文件头(因为SizeOfHeaders…...

Android—— MIPI屏调试
一、实现步骤 1、在kernel/arch/arm/boot/dts/lcd-box.dtsi文件中打开&dsi0节点,关闭其他显示面板接口(&edp_panel、&lvds_panel) --- a/kernel/arch/arm/boot/dts/lcd-box.dtsib/kernel/arch/arm/boot/dts/lcd-box.dtsi-5,14 …...

BLE协议—协议栈基础
BLE协议—协议栈基础 BLE协议栈基础通用访问配置文件层(Generic Access Profile,GAP)GAP角色设备配置模式和规程安全模式广播和扫描 BLE协议栈基础 蓝牙BLE协议栈包含三部分:主机、主机接口层和控制器。 主机:逻辑链路…...
yolov8知识蒸馏代码详解:支持logit和feature-based蒸馏
文章目录 1. 知识蒸馏理论2. yolov8 蒸馏代码应用2.1 环境配置2.2 训练模型(1) 训练教师模型(2) 训练学生模型baseline(3) 蒸馏训练3. 知识蒸馏代码详解3.1 蒸馏参数设置3.2 蒸馏损失代码讲解3.2.1 Feature based loss3.2.1 Logit loss3.3 获取蒸馏的feature map及channels...

03-微服务-Ribbon负载均衡
Ribbon负载均衡 1.1.负载均衡原理 SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。 那么我们发出的请求明明是http://userservice/user/1,怎么变成了http://localhost:8081的呢? 1.2.源码跟踪 为什么我们只输入…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式
pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space
问题:IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案:将编译的堆内存增加一点 位置:设置setting-》构建菜单build-》编译器Complier...
Java中栈的多种实现类详解
Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...
el-amap-bezier-curve运用及线弧度设置
文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...