数据结构:第7章:查找(复习)
目录
顺序查找:
折半查找:
二叉排序树:
4. (程序题)
平衡二叉树:
顺序查找:
ASL=
折半查找:
这里 j 表示 二叉查找树的第 j 层
二叉排序树:
二叉排序树(Binary Search Tree,BST)是一种特殊的二叉树,定义:
- 对于二叉排序树的每个节点,其左子树的所有节点的值都小于该节点的值。
- 对于二叉排序树的每个节点,其右子树的所有节点的值都大于该节点的值。
- 对于二叉排序树的每个节点,其左右子树也分别是二叉排序树。
可以发现二叉排序树的定义时递归定义。
这些性质保证了对于二叉排序树中的任意节点,其左子树的节点值小于它,右子树的节点值大于它,从而形成了一种有序的结构。
二叉排序树的有序性质使得在其中进行查找、插入和删除等操作时具有较高的效率。对于给定的值,可以通过比较节点的值,按照二叉排序树的性质在树中快速定位所需的节点。
二叉排序树的难点在于删除树中的某个值。删除某个键值为 key 的节点时,有三中情况要考虑:
1.该节点 r 的左孩子为空:r=r->lch;
2.该节点 r 的右孩子为空:l=l->rch;
3.该节点的左右孩子均不位空:选择左孩子中 key 值最大的节点替换 r;
4. (程序题)
二叉排序树插入、删除
键盘输入若干整型数据,以0做结束,利用二叉排序树的插入算法创建二叉排序树,并中序遍历该二叉树。之后输入一个整数x,在二叉排序树中查找,若找到则输出“该数存在”,否则输出“该数不存在”;再输入一个要删除的一定存在的整数y,完成在该二叉树中删除y的操作,并输出删除y后的二叉树中序遍历的结果。
输出数据之间用一个空格分隔。
输入:
1 5 4 2 3 6 8 7 9 11 14 13 12 16 19 0
输出:
1 2 3 4 5 6 7 8 9 11 12 13 14 16 19
输入:
19
输出:
该数存在
输入:
14
输出:
1 2 3 4 5 6 7 8 9 11 12 13 16 19
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef long long LL;typedef struct Info {int key;
}Info;typedef struct Node {Info data;struct Node* lch;struct Node* rch;
}Node,*Tree;void print(Tree& r) {if (r == NULL)return;print(r->lch);cout << r->data.key << " ";print(r->rch);
}void Insert(Tree& r, int key) {if (r == NULL) {Node* p = new Node;p->data.key = key;p->rch = p->lch = NULL;r = p;}else if(r->data.key<key) {Insert(r->rch, key);}else {Insert(r->lch, key);}
}void build(Tree& r) {int in;cin >> in;while (in) {Insert(r, in);cin >> in;}
}int search(Tree& r, int key) {if (r == NULL)return 0;if (r->data.key == key) {return 1;}if (r->data.key < key) {if (search(r->rch, key))return 1;}else {if (search(r->lch, key))return 1;}return 0;
}int del(Tree& r, int key) {if (r == NULL)return 0;if (r->data.key == key) {if (r->lch == NULL) {r =r->rch;}else if (r->rch == NULL) {r =r->lch;}else {//cout << r->data.key << endl;Node* p = r->lch;Node* fa = r;while (p->rch != NULL) {fa = p;p = p->rch;}Node* t = r;if (fa != r)fa->rch = p->lch;if (r->lch != p)p->lch = r->lch;p->rch = r->rch;//cout << p->data.key << endl;r = p;delete t;}return 1;}if (r->data.key < key) {if (del(r->rch, key))return 1;}else {if (del(r->lch, key))return 1;}return 0;
}int main() {Node* root = NULL;build(root);print(root);int in;cin >> in;if (search(root, in)) {cout << "该数存在" << endl;}else {cout << "该数不存在" << endl;}cin >> in;del(root, in);print(root);return 0;
}
用例1:
输入
1 5 4 2 3 6 8 7 9 11 14 13 12 16 19 0 19 14
输出
1 2 3 4 5 6 7 8 9 11 12 13 14 16 19 该数存在 1 2 3 4 5 6 7 8 9 11 12 13 16 19
用例2:
输入
10 9 8 7 11 12 13 14 0 14 8
输出
7 8 9 10 11 12 13 14 该数存在 7 9 10 11 12 13 14
用例3:
输入
23 45 67 21 12 15 9 10 55 0 19 9
输出
9 10 12 15 21 23 45 55 67 该数不存在 10 12 15 21 23 45 55 67
平衡二叉树:
平衡二叉树的定义
平衡二叉排序树查找算法的性能取决于二叉树的结构,而二叉树的形状则取决于其数据集。
如果数据呈有序排列,则二叉排序树是线性的,查找的时间复杂度为O(n);反之,如果二叉排序
树的结构合理,则查找速度较快,查找的时间复杂度为O(logn)。事实上,树的高度越小,查找
速度越快。因此,希望二叉树的高度尽可能小。本节将讨论一种特殊类型的二叉排序树,称为平
衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree),因由前苏联数学家 Adelson-Velskii 和
Landis 提出,所以又称AVL树。
平衡二叉树或者是空树,或者是具有如下特征的二叉排序树:
(1)左子树和右子树的深度之差的绝对值不超过1;
(2)左子树和右子树也是平衡二叉树。
若将二叉树上结点的平衡因子(Balance Factor,BF)定义为该结点左子树和右子树的深度之
差,则平衡二叉树上所有结点的平衡因子只可能是-1、0和1。只要二叉树上有一个结点的平衡
因子的绝对值大于1,则该二叉树就是不平衡的。图7.11(a)所示为两棵平衡二叉树,而图 7.11
(b)所示为两棵不平衡的二叉树,结点中的值为该结点的平衡因子。
平衡二叉树的调整(重难点)
LL型调整操作:由于在A左子树根结点的左子树上插入结点,A的平衡因子由1增至2,致使以A为根的子树失去平衡,则需进行一次向右的顺时针旋转操作

RR 型调整操作:当在 A 的右子树的右子树上插入结点时,A 的平衡因子由 -1 变为 -2,导致以 A 为根结点的子树失去平衡。此时,需要进行一次向左的逆时针旋转操作,将 A 的右子树作为其左子树的右子树,并将 A 作为其左子树的根结点。

LR型调整操作:由于在A的左子树根结点的右子树上插入结点, A的平衡因子由1增至2,致使以A为根结点的子树失去平衡,则需进行两次旋转操作。第一次对B及其右子树进行递时针旋转,C转上去成为B的根,这时变成了LL型,所以第二次进行LL型的顺时针旋转即可恢复平衡。如果C原来有左子树,则调整C的左子树为B的右子树,

RL型调整操作:由于在A的右子树根结点的左子树上插入结点,A的平衡因子由-1变为-2,致使以A 为根结点的子树失去平衡,则旋转方法和LR型相对称,也需进行两次旋转,先顺时针右旋,再逆时针左旋。

左,右旋转调整代码:mp用来记录某个节点的高度
void Turnleft(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->right;A->right = B->left;B->left = A;r = B;mp[r->left] -= 2;mp[r] = mp[r->right] + 1;}void Turnright(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->left;A->left = B->right;B->right = A;r = B;mp[r->right] -= 2;mp[r] = mp[r->left] + 1;}
判断不平衡类型类型的代码:
void fun1(vector<int>& g, TreeNode* r) {if ( r == NULL||(r->left==NULL&&r->right==NULL))return;if (mp[r->left] == mp[r->right])return;g.push_back(mp[r->left] - mp[r->right]);fun1(g, r->left);fun1(g, r->right);}string check(TreeNode* root) {vector<int>g;fun1(g, root);if (g[0] == 2&&g[1]==1)return "LL";else if (g[0] == 2&&g[1]==-1)return "LR";else {if (g[0] == -2&&g[1]==1)return "RL";return "RR";}return "NO";}
建立平衡二叉树的代码
class Solution {
public:unordered_map<TreeNode*, int>mp;void fun1(vector<int>& g, TreeNode* r) {if (r == NULL || (r->left == NULL && r->right == NULL))return;if (mp[r->left] == mp[r->right])return;g.push_back(mp[r->left] - mp[r->right]);fun1(g, r->left);fun1(g, r->right);}string check(TreeNode* root) {vector<int>g;fun1(g, root);if (g[0] == 2 && g[1] == 1)return "LL";else if (g[0] == 2 && g[1] == -1)return "LR";else {if (g[0] == -2 && g[1] == 1)return "RL";return "RR";}return "NO";}void Turnleft(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->right;A->right = B->left;B->left = A;r = B;mp[r->left] -= 2;mp[r] = mp[r->right] + 1;}void Turnright(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->left;A->left = B->right;B->right = A;r = B;mp[r->right] -= 2;mp[r] = mp[r->left] + 1;}void change(TreeNode*& r, string ret) {if (ret == "LL") {Turnright(r);}else if (ret == "RR") {Turnleft(r);}else if (ret == "RL") {Turnright(r->right);Turnleft(r);}else {Turnleft(r->left);Turnright(r);}}void Insert(TreeNode*& r, int key) {if (r == NULL) {TreeNode* p = new TreeNode;p->val = key;p->left = p->right = NULL;r = p;mp[r] = 1;return ;}if (key > r->val) {Insert(r->right, key);}else {Insert(r->left, key);}mp[r] = max(mp[r->left], mp[r->right]) + 1;int h = mp[r->left] - mp[r->right];if (h == 2 || h == -2) {//cout <<" ___________________"<< r->val << endl;string ret = check(r);//cout << ret << endl;change(r, ret);/* for (unordered_map<TreeNode*, int>::iterator it = mp.begin(); it != mp.end(); it++) {if (it->first != NULL) {cout << "KKKK " << it->first->val << " " << it->second << endl;}}cout << "先 ";inorderTraversal1(r);cout << endl;cout << "中 ";inorderTraversal(r);cout << endl;*/}}TreeNode* balanceBST(TreeNode*& root,vector<int>preorder) {for (int i = 0; i <preorder.size(); i++) {Insert(root, preorder[i]);}return root;}
};
完整代码:
代码中有测试样例
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;// Definition for a binary tree node.
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};// Function to insert a value into BST
TreeNode* insertIntoBST(TreeNode* root, int val) {if (!root) {return new TreeNode(val);}if (val < root->val) {root->left = insertIntoBST(root->left, val);}else {root->right = insertIntoBST(root->right, val);}return root;
}// Function to construct BST from preorder traversal
TreeNode* bstFromPreorder(vector<int>& preorder) {TreeNode* root = nullptr;for (int val : preorder) {if (val == 0)continue;root = insertIntoBST(root, val);}return root;
}// Function to perform inorder traversal (for verification)
void inorderTraversal(TreeNode* root) {if (root) {inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}
}
void inorderTraversal1(TreeNode* root) {if (root) {cout << root->val << " ";inorderTraversal1(root->left);inorderTraversal1(root->right);}
}// Function to perform level order traversal
void levelOrderTraversal(TreeNode* root) {if (!root) {return;}queue<TreeNode*> q;q.push(root);while (!q.empty()) {TreeNode* current = q.front();q.pop();cout << current->val << " ";if (current->left) {q.push(current->left);}if (current->right) {q.push(current->right);}}
}class Solution {
public:unordered_map<TreeNode*, int>mp;void fun1(vector<int>& g, TreeNode* r) {if (r == NULL || (r->left == NULL && r->right == NULL))return;if (mp[r->left] == mp[r->right])return;g.push_back(mp[r->left] - mp[r->right]);fun1(g, r->left);fun1(g, r->right);}string check(TreeNode* root) {vector<int>g;fun1(g, root);if (g[0] == 2 && g[1] == 1)return "LL";else if (g[0] == 2 && g[1] == -1)return "LR";else {if (g[0] == -2 && g[1] == 1)return "RL";return "RR";}return "NO";}void Turnleft(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->right;A->right = B->left;B->left = A;r = B;mp[r->left] -= 2;mp[r] = mp[r->right] + 1;}void Turnright(TreeNode*& r) {TreeNode* A = r;TreeNode* B = r->left;A->left = B->right;B->right = A;r = B;mp[r->right] -= 2;mp[r] = mp[r->left] + 1;}void change(TreeNode*& r, string ret) {if (ret == "LL") {Turnright(r);}else if (ret == "RR") {Turnleft(r);}else if (ret == "RL") {Turnright(r->right);Turnleft(r);}else {Turnleft(r->left);Turnright(r);}}void Insert(TreeNode*& r, int key) {if (r == NULL) {TreeNode* p = new TreeNode;p->val = key;p->left = p->right = NULL;r = p;mp[r] = 1;return ;}if (key > r->val) {Insert(r->right, key);}else {Insert(r->left, key);}mp[r] = max(mp[r->left], mp[r->right]) + 1;int h = mp[r->left] - mp[r->right];if (h == 2 || h == -2) {//cout <<" ___________________"<< r->val << endl;string ret = check(r);//cout << ret << endl;change(r, ret);/* for (unordered_map<TreeNode*, int>::iterator it = mp.begin(); it != mp.end(); it++) {if (it->first != NULL) {cout << "KKKK " << it->first->val << " " << it->second << endl;}}cout << "先 ";inorderTraversal1(r);cout << endl;cout << "中 ";inorderTraversal(r);cout << endl;*/}}TreeNode* balanceBST(TreeNode*& root,vector<int>preorder) {for (int i = 0; i <preorder.size(); i++) {Insert(root, preorder[i]);}return root;}
};int main() {vector<int> preorder = { 1,2,3,4,5,6,7,8,9,10,31,25,47,16,28,30 };/*1,2,3,4,5,6,7,8,9,1019,10,4,17,531,25,47,40,69,43 1,2,3,4 31,25,47,40,69,36 31,25,47,16,28,26 31,25,47,16,28,30 1,2,3,4,5,6,7,8,9,10,31,25,47,16,28,30*/TreeNode* root = NULL;Solution solve;solve.balanceBST(root,preorder);levelOrderTraversal(root);cout << endl;cout << "先 ";inorderTraversal1(root);cout << endl;cout << "中 ";inorderTraversal(root);cout << endl;return 0;
}
相关文章:
数据结构:第7章:查找(复习)
目录 顺序查找: 折半查找: 二叉排序树: 4. (程序题) 平衡二叉树: 顺序查找: ASL 折半查找: 这里 j 表示 二叉查找树的第 j 层 二叉排序树: 二叉排序树(Binary Search Tree&…...
编程语言的未来?
编程语言的未来? 随着科技的飞速发展,编程语言在计算机领域中扮演着至关重要的角色。它们是软件开发的核心,为程序员提供了与机器沟通的桥梁。那么,在技术不断进步的未来,编程语言的走向又将如何呢? 在技…...
SpringBoot的测试
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开心好久好久😎 📚系列专栏:Java全栈,…...
C++睡眠函数:Windows平台下的Sleep函数和Linux平台的usleep函数
C/C睡眠函数:Windows平台下的Sleep函数和Linux平台的usleep函数 WinAPI Sleep Sleep函数属于Windows API,使用它需要先包含synchapi.h。 void Sleep(DWORD dwMilliseconds);函数仅有一个参数(睡眠时长),单位是毫秒。…...
详解白帽子以及红队、蓝队和紫队
企业继续数字化,其关键基础设施和运营扩大了攻击面,暴露于各种威胁途径的面前。为了解决这个问题,企业领导者认识到拥有内部专家的重要性。考虑到网络威胁领域不断发展的态势,企业领导者可以利用道德黑客以及红队、蓝队和紫队的工…...
1、docker常用技巧:docker数据位置更改
目录 🍅点击这里查看所有博文 随着自己工作的进行,接触到的技术栈也越来越多。给我一个很直观的感受就是,某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了,只有经常会用到的东西才有可能真正记…...
Qt之设置QLabel的背景色和前景色
方法有两种,一种是使用调色板,一种是使用样式表。 方法一:调色板 QPalette palette ; // 设置黑底绿字 palette .setColor(QPalette::Background, Qt::black); palette .setColor(QPalette::WindowText, Qt::green); // 这句不能少,否则没效果 ui->label->setAutoF…...
数模学习day06-主成分分析
主成分分析(Principal Component Analysis,PCA)主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。一般来说当研究的问题涉及到…...
Windows PowerShell的安全目标——安全警报
Windows PowerShell的安全目标——安全警报 1. 保证Shell安全 自从2006年年底PowerShell发布以来,微软在安全和脚本方面并没有取得很好的名声。毕竟那个时候,**VBScript和Windows Script Host(WSH)**是两个最流行的病毒和恶意软件的载体,…...
k8s笔记1- 初步认识k8s
k8s简介: kubernetes,俗称k8是,用于自动部署,扩缩和管理容器化应用程序的开源系统,它将组成应用程序的容器,组合成逻辑单元,便于管理和服务发现。 k8s的作用 自动化上线和回滚、存储编排…...
ARM CCA机密计算软件架构之内存加密上下文(MEC)
内存加密上下文(MEC) 内存加密上下文是与内存区域相关联的加密配置,由MMU分配。 MEC是Arm Realm Management Extension(RME)的扩展。RME系统架构要求对Realm、Secure和Root PAS进行加密。用于每个PAS的加密密钥、调整或加密上下文在该PAS内是全局的。例如,对于Realm PA…...
python基于flask实现一个文本问答系统
from flask import Flask, render_template, requestapp Flask(__name__)# 一个简单的问题-答案映射,实际中可以使用更复杂的存储结构(数据库等) qa_pairs {"什么是人工智能?": "人工智能是模拟人类智能的一种机…...
lambda表达式使用和示例
lambda表达式 什么是lambda 学习lamdba有两个结构十分关键,一个是lamdba自己,另一个是函数式接口 lamdba lamdba表达式本质上就是匿名方法,不能独立运行用于实现函数式接口定义的另一个方法,因此lamdba会产生一个匿名类lamdba…...
STM32学习笔记十八:WS2812制作像素游戏屏-飞行射击游戏(8)探索游戏多样性,范围伤害模式
前面我们的攻击手段比较单一,虽然已经分出了 EnemyT1 / EnemyT2 / EnemyT3, 但里面还是基本一样的。这回,我们尝试实现一些新的攻击方法,实现一些新的算法。 1、前面我们小飞机EnemyT1 的攻击方式是垂直向下发射子弹。 那么大飞机…...
C#获取windows系统资源使用情况
1.前言 之前有一篇博客介绍如何获取Linux服务器上的资源使用情况《Java 获取服务器资源(内存、负载、磁盘容量)》,这里介绍如何通过C#获取Window系统的资源使用。 2.获取服务器资源 2.1.内存 [DllImport("kernel32.dll")][retu…...
PE解释器之PE文件结构
PE文件是由许许多多的结构体组成的,程序在运行时就会通过这些结构快速定位到PE文件的各种资源,其结构大致如图所示,从上到下依次是Dos头、Nt头、节表、节区和调试信息(可选)。其中Dos头、Nt头和节表在本文中统称为PE文件头(因为SizeOfHeaders…...
Android—— MIPI屏调试
一、实现步骤 1、在kernel/arch/arm/boot/dts/lcd-box.dtsi文件中打开&dsi0节点,关闭其他显示面板接口(&edp_panel、&lvds_panel) --- a/kernel/arch/arm/boot/dts/lcd-box.dtsib/kernel/arch/arm/boot/dts/lcd-box.dtsi-5,14 …...
BLE协议—协议栈基础
BLE协议—协议栈基础 BLE协议栈基础通用访问配置文件层(Generic Access Profile,GAP)GAP角色设备配置模式和规程安全模式广播和扫描 BLE协议栈基础 蓝牙BLE协议栈包含三部分:主机、主机接口层和控制器。 主机:逻辑链路…...
yolov8知识蒸馏代码详解:支持logit和feature-based蒸馏
文章目录 1. 知识蒸馏理论2. yolov8 蒸馏代码应用2.1 环境配置2.2 训练模型(1) 训练教师模型(2) 训练学生模型baseline(3) 蒸馏训练3. 知识蒸馏代码详解3.1 蒸馏参数设置3.2 蒸馏损失代码讲解3.2.1 Feature based loss3.2.1 Logit loss3.3 获取蒸馏的feature map及channels...
03-微服务-Ribbon负载均衡
Ribbon负载均衡 1.1.负载均衡原理 SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。 那么我们发出的请求明明是http://userservice/user/1,怎么变成了http://localhost:8081的呢? 1.2.源码跟踪 为什么我们只输入…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
PydanticAI快速入门示例
参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...
