(学习打卡2)重学Java设计模式之六大设计原则
前言:听说有本很牛的关于Java设计模式的书——重学Java设计模式,然后买了(*^▽^*)
开始跟着小傅哥学Java设计模式吧,本文主要记录笔者的学习笔记和心得。
打卡!打卡!
六大设计原则
(引读:这里的节奏是,先说一下概念定义,然后是模拟场景,最后是反例、正例。)
一、单一职责原则
1、定义
单一职责原则,它规定一个类应该只有一个发生变化的原因。
为什么?
因为如果开发的一个功能不是一次性的,当一个Class类负责超过两个及以上职责时,当需求不断迭代、实现类持续扩张,就会出现难以维护、不好扩展、测试难度大和上线风险高等问题。
2、模式场景
一个视频网站用户分类的例子:
- 访问用户,只能看480P的高清视频,有广告
- 普通会员,可以看720P的超清视频,有广告
- VIP会员,付费的大哥,可以看1080P的蓝光视频,无广告
3、违背原则方案(反例)
根据上面的需求,直接编码,实现一个最简单的基本功能:根据不同的用户类型,判断用户可以观看的视频类型。
public class VideoUserService {public void serveGrade(String userType){if ("VIP用户".equals(userType)){System.out.println("VIP用户,视频1080P蓝光");} else if ("普通用户".equals(userType)){System.out.println("普通用户,视频720P超清");} else if ("访客用户".equals(userType)){System.out.println("访客用户,视频480P高清");}}
}
如上,这一个类包含着多个不同的行为,多种用户职责,如果在这样的类上继续扩展功能就会显得很臃肿。比如再加一个“超级VIP会员”,可以超前点播,按上面的实现方式,只能继续ifelse。这样的代码结构每次迭代,新需求的实现都可能会影响到其他逻辑。
4、单一职责原则改善代码(正例)
视频播放是视频网站的核心功能,当完成核心功能的开发后,就需要不断地完善用户权限,才能更好运营网站。其实就是不断建设用户权益,根据不同的用户类型提供差异化服务。
为了满足不断迭代的需求,就不能向上面一样把所有职责行为混为一谈,而是应该提供一个上层的接口类,对不同的差异化用户给出单独的实现类,拆分各自的职责。
(1)定义接口
public interface IVideoUserService {// 视频清晰级别;480P、720P、1080Pvoid definition();// 广告播放方式;无广告、有广告void advertisement();
}
定义出上层接口IVideoUserService,统一定义需要实现的功能,包括视频清晰级别接口definition()、广告播放方式接口advertisement()。然后三种不同类型的用户就可以分别实现自己的服务类,做到职责统一。
(2)实现类
1)访问用户,只能看480P的高清视频,有广告
public class GuestVideoUserService implements IVideoUserService {public void definition() {System.out.println("访客用户,视频480P高清");}public void advertisement() {System.out.println("访客用户,视频有广告");}
}
2)普通会员,可以看720P的超清视频,有广告
public class OrdinaryVideoUserService implements IVideoUserService {public void definition() {System.out.println("普通用户,视频720P超清");}public void advertisement() {System.out.println("普通用户,视频有广告");}}
3)VIP会员,付费的大哥,可以看1080P的蓝光视频,无广告
public class VipVideoUserService implements IVideoUserService {public void definition() {System.out.println("VIP用户,视频1080P蓝光");}public void advertisement() {System.out.println("VIP用户,视频无广告");}}
5、易扩展示例
假设有新的需求如下:7天试用VIP会员,可以试用看1080P的蓝光视频,但是有广告。
// 7天试用VIP用户
public class TryVipVideoUserService implements IVideoUserService {public void definition() {System.out.println("7天试用VIP用户,视频1080P蓝光");}public void advertisement() {System.out.println("7天试用VIP用户,视频有广告");}}
在项目开发的过程中,尽可能保证接口的定义、类的实现以及方法开发保持单一职责,对项目后期的迭代和维护是很好的。
二、开闭原则
1、定义
在面向对象编程领域中,开闭原则规定软件的对象、类、模块和函数对扩展应该是开放的,但是对于修改是封闭的。
这就意味着应该用抽象定义结构,用具体实现扩展细节,以此确保软件系统开发和维护过程的可靠性。
开闭原则的核心思想可以理解为面向抽象编程。
小结:对扩展是开放的,对修改是封闭的。
2、模拟场景
对于外部调用方,只要能体现出面向抽象编程,定义出接口并实现其方法,即不修改原有方法体,只通过继承方式进行扩展,都可以体现出开闭原则。
(1)场景案例
计算三种形状的面积,长方形、三角形,圆形。其中圆的π=3.14,但后续由于π的取值精度不适用于后面的场景,需要再扩展,接下来模拟这个场景来体现开闭原则。
(2)定义接口
public interface ICalculationArea {/*** 计算面积,长方形** @param x 长* @param y 宽* @return 面积*/double rectangle(double x, double y);/*** 计算面积,三角形* @param x 边长x* @param y 边长y* @param z 边长z* @return 面积** 海伦公式:S=√[p(p-a)(p-b)(p-c)] 其中:p=(a+b+c)/2*/double triangle(double x, double y, double z);/*** 计算面积,圆形* @param r 半径* @return 面积** 圆面积公式:S=πr²*/double circular(double r);}
(3)实现类
特别地,这里的π取3.14D,这也是要扩展精度的方法和体现开闭原则的地方。
public class CalculationArea implements ICalculationArea {private final static double π = 3.14D;public double rectangle(double x, double y) {return x * y;}public double triangle(double x, double y, double z) {double p = (x + y + z) / 2;return Math.sqrt(p * (p - x) * (p - y) * (p - z));}public double circular(double r) {return π * r * r;}}
3、违背原则方案
如果不考虑开闭原则,也不考虑整个工程服务的使用情况,直接改π值。
private final static double π = 3.141592653D;
4、开闭原则改善代码
更好的做法,按照开闭原则。继承父类,扩展需要的方法,同保留原有的方法,新增自己需要的方法。它的主要目的是不能因为个例需求的变化二改变预定的实现类。
public class CalculationAreaExt extends CalculationArea {private final static double π = 3.141592653D;@Overridepublic double circular(double r) {return π * r * r;}}
扩展后的方法满足了π精度变化的需求,需要使用此方法的用户可以直接调用。而其他的方法,也不影响继续使用。
三、里氏替换原则
1、定义
2、模拟场景
3、违背原则方案
4、里氏替换原则改善代码
四、迪米特法则原则
五、接口隔离原则
六、依赖倒置原则
相关文章:
(学习打卡2)重学Java设计模式之六大设计原则
前言:听说有本很牛的关于Java设计模式的书——重学Java设计模式,然后买了(*^▽^*) 开始跟着小傅哥学Java设计模式吧,本文主要记录笔者的学习笔记和心得。 打卡!打卡! 六大设计原则 (引读:这里…...
数据结构:第7章:查找(复习)
目录 顺序查找: 折半查找: 二叉排序树: 4. (程序题) 平衡二叉树: 顺序查找: ASL 折半查找: 这里 j 表示 二叉查找树的第 j 层 二叉排序树: 二叉排序树(Binary Search Tree&…...
编程语言的未来?
编程语言的未来? 随着科技的飞速发展,编程语言在计算机领域中扮演着至关重要的角色。它们是软件开发的核心,为程序员提供了与机器沟通的桥梁。那么,在技术不断进步的未来,编程语言的走向又将如何呢? 在技…...
SpringBoot的测试
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开心好久好久😎 📚系列专栏:Java全栈,…...
C++睡眠函数:Windows平台下的Sleep函数和Linux平台的usleep函数
C/C睡眠函数:Windows平台下的Sleep函数和Linux平台的usleep函数 WinAPI Sleep Sleep函数属于Windows API,使用它需要先包含synchapi.h。 void Sleep(DWORD dwMilliseconds);函数仅有一个参数(睡眠时长),单位是毫秒。…...
详解白帽子以及红队、蓝队和紫队
企业继续数字化,其关键基础设施和运营扩大了攻击面,暴露于各种威胁途径的面前。为了解决这个问题,企业领导者认识到拥有内部专家的重要性。考虑到网络威胁领域不断发展的态势,企业领导者可以利用道德黑客以及红队、蓝队和紫队的工…...
1、docker常用技巧:docker数据位置更改
目录 🍅点击这里查看所有博文 随着自己工作的进行,接触到的技术栈也越来越多。给我一个很直观的感受就是,某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了,只有经常会用到的东西才有可能真正记…...
Qt之设置QLabel的背景色和前景色
方法有两种,一种是使用调色板,一种是使用样式表。 方法一:调色板 QPalette palette ; // 设置黑底绿字 palette .setColor(QPalette::Background, Qt::black); palette .setColor(QPalette::WindowText, Qt::green); // 这句不能少,否则没效果 ui->label->setAutoF…...
数模学习day06-主成分分析
主成分分析(Principal Component Analysis,PCA)主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。一般来说当研究的问题涉及到…...
Windows PowerShell的安全目标——安全警报
Windows PowerShell的安全目标——安全警报 1. 保证Shell安全 自从2006年年底PowerShell发布以来,微软在安全和脚本方面并没有取得很好的名声。毕竟那个时候,**VBScript和Windows Script Host(WSH)**是两个最流行的病毒和恶意软件的载体,…...
k8s笔记1- 初步认识k8s
k8s简介: kubernetes,俗称k8是,用于自动部署,扩缩和管理容器化应用程序的开源系统,它将组成应用程序的容器,组合成逻辑单元,便于管理和服务发现。 k8s的作用 自动化上线和回滚、存储编排…...
ARM CCA机密计算软件架构之内存加密上下文(MEC)
内存加密上下文(MEC) 内存加密上下文是与内存区域相关联的加密配置,由MMU分配。 MEC是Arm Realm Management Extension(RME)的扩展。RME系统架构要求对Realm、Secure和Root PAS进行加密。用于每个PAS的加密密钥、调整或加密上下文在该PAS内是全局的。例如,对于Realm PA…...
python基于flask实现一个文本问答系统
from flask import Flask, render_template, requestapp Flask(__name__)# 一个简单的问题-答案映射,实际中可以使用更复杂的存储结构(数据库等) qa_pairs {"什么是人工智能?": "人工智能是模拟人类智能的一种机…...
lambda表达式使用和示例
lambda表达式 什么是lambda 学习lamdba有两个结构十分关键,一个是lamdba自己,另一个是函数式接口 lamdba lamdba表达式本质上就是匿名方法,不能独立运行用于实现函数式接口定义的另一个方法,因此lamdba会产生一个匿名类lamdba…...
STM32学习笔记十八:WS2812制作像素游戏屏-飞行射击游戏(8)探索游戏多样性,范围伤害模式
前面我们的攻击手段比较单一,虽然已经分出了 EnemyT1 / EnemyT2 / EnemyT3, 但里面还是基本一样的。这回,我们尝试实现一些新的攻击方法,实现一些新的算法。 1、前面我们小飞机EnemyT1 的攻击方式是垂直向下发射子弹。 那么大飞机…...
C#获取windows系统资源使用情况
1.前言 之前有一篇博客介绍如何获取Linux服务器上的资源使用情况《Java 获取服务器资源(内存、负载、磁盘容量)》,这里介绍如何通过C#获取Window系统的资源使用。 2.获取服务器资源 2.1.内存 [DllImport("kernel32.dll")][retu…...
PE解释器之PE文件结构
PE文件是由许许多多的结构体组成的,程序在运行时就会通过这些结构快速定位到PE文件的各种资源,其结构大致如图所示,从上到下依次是Dos头、Nt头、节表、节区和调试信息(可选)。其中Dos头、Nt头和节表在本文中统称为PE文件头(因为SizeOfHeaders…...
Android—— MIPI屏调试
一、实现步骤 1、在kernel/arch/arm/boot/dts/lcd-box.dtsi文件中打开&dsi0节点,关闭其他显示面板接口(&edp_panel、&lvds_panel) --- a/kernel/arch/arm/boot/dts/lcd-box.dtsib/kernel/arch/arm/boot/dts/lcd-box.dtsi-5,14 …...
BLE协议—协议栈基础
BLE协议—协议栈基础 BLE协议栈基础通用访问配置文件层(Generic Access Profile,GAP)GAP角色设备配置模式和规程安全模式广播和扫描 BLE协议栈基础 蓝牙BLE协议栈包含三部分:主机、主机接口层和控制器。 主机:逻辑链路…...
yolov8知识蒸馏代码详解:支持logit和feature-based蒸馏
文章目录 1. 知识蒸馏理论2. yolov8 蒸馏代码应用2.1 环境配置2.2 训练模型(1) 训练教师模型(2) 训练学生模型baseline(3) 蒸馏训练3. 知识蒸馏代码详解3.1 蒸馏参数设置3.2 蒸馏损失代码讲解3.2.1 Feature based loss3.2.1 Logit loss3.3 获取蒸馏的feature map及channels...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
