目标检测 YOLOv5 - 推理时的数据增强
目标检测 YOLOv5 - 推理时的数据增强
flyfish
版本 YOLOv5 6.2
参考地址
https://github.com/ultralytics/yolov5/issues/303
在训练时可以使用数据增强,在推理阶段也可以使用数据增强
在测试使用数据增强有个名字叫做Test-Time Augmentation (TTA)
实际使用中使用了大中小三个不同分辨率,中间大小分辨率的图像进行了左右反转
大分辨率
480 * 640 宽度W 高度H 比例为1
中分辨率
416 * 544 宽度W 高度H 比例为0.83
小分辨率
352 * 448 宽度W 高度H 比例为0.67
命令
python detect.py --weights ./yolov5s.pt --source ./data/images/bus.jpg --imgsz 640 --augment
--augment
语法
推理时默认不使用增强
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-v", "--verbose", help="increase output verbosity",action="store_true")
args = parser.parse_args()
if args.verbose:print("verbosity turned on")
else:print("verbosity turned off")
假如上段代码是test.py
# python test.py
# 输出 verbosity turned off# python test.py -v
# 输出 verbosity turned on
验证图像大小是每个维度上的stride的倍数,默认是32的倍数
例如 图像大小是1111 那么就是
--img-size
[1111, 1111] 更新为 [1120, 1120]
def check_img_size(imgsz, s=32, floor=0):# Verify image size is a multiple of stride s in each dimensionif isinstance(imgsz, int): # integer i.e. img_size=640new_size = max(make_divisible(imgsz, int(s)), floor)else: # list i.e. img_size=[640, 480]imgsz = list(imgsz) # convert to list if tuplenew_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]if new_size != imgsz:LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')return new_size
推理增强部分
def _forward_augment(self, x):img_size = x.shape[-2:] # height, widths = [1, 0.83, 0.67] # scalesf = [None, 3, None] # flips (2-ud, 3-lr)y = [] # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))print("xi.shape[2:]:",xi.shape[2:])yi = self._forward_once(xi)[0] # forwardprint("0 yi:",yi.shape)#cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # saveyi = self._descale_pred(yi, fi, si, img_size)print("1 yi.shape:",yi.shape)y.append(yi)y = self._clip_augmented(y) # clip augmented tailsreturn torch.cat(y, 1), None # augmented inference, traindef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1] # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0] # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scaleif flips == 2:y = img_size[0] - y # de-flip udelif flips == 3:x = img_size[1] - x # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl)) # grid pointse = 1 # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indicesy[0] = y[0][:, :-i] # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indicesy[-1] = y[-1][:, i:] # smallreturn y
关于翻转看
if self.inplace:p[..., :4] /= scale # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1] # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
2表示上下翻转
3表示左右翻转
s = [1, 0.83, 0.67]
是缩放比例,且能被32整除
这里的顺序是HW
xi.shape[2:]: torch.Size([640, 480])
xi.shape[2:]: torch.Size([544, 416])
xi.shape[2:]: torch.Size([448, 352])yi.shape: torch.Size([1, 18900, 85])
yi.shape: torch.Size([1, 13923, 85])
yi.shape: torch.Size([1, 9702, 85])
合并去冗余之后再进NMS
torch.Size([1, 34233, 85])
原来推理一张图像,增强后是推理3张
相关文章:

目标检测 YOLOv5 - 推理时的数据增强
目标检测 YOLOv5 - 推理时的数据增强 flyfish 版本 YOLOv5 6.2 参考地址 https://github.com/ultralytics/yolov5/issues/303在训练时可以使用数据增强,在推理阶段也可以使用数据增强 在测试使用数据增强有个名字叫做Test-Time Augmentation (TTA) 实际使用中使…...

篇二:springboot2.7 OAuth2 server使用jdbc存储RegisteredClient
上一篇 <<springboot 2.7 oauth server配置源码走读一>>中简单描述了oauth2 server的配置,其中使用了内存保存 RegisteredClient,本篇改用mysql存储。 db存储需要创建表,表结构应该是什么样的呢,从spring给我们封装好…...

卷积神经网络|导入图片
在学习卷积神经网络时,我们通常使用的就是公开的数据集,这里,我们不使用公开数据集,直接导入自己的图片数据,下面,就简单写个程序实现批量图片的导入。 import osfrom PIL import Imageimport numpy as np…...
关于unity的组件VerticalLayoutGroup刷新显示不正常的问题
先说明一下我是如何用到,有哪些处理的 用到这个组件基本上都是将列表进行排版操作的,竖着,或者横着,横着用HorizontalLayoutGroup 还有一个和这个组件搭配的组件叫ContentSizeFitter 先说我是怎么发现这个组件不好用的 //本地读取…...

wait 和 notify 这个为什么要在synchronized 代码块中?
一个工作七年的小伙伴,竟然不知道” wait”和“notify”为什么要在 Synchronized 代码块中 。 好吧,如果屏幕前的你也不知道,请在公屏上刷”不知道“。 对于这个问题,我们来看看普通人和高手的回答。 一、问题解析 1. wait 和 n…...

大白话说区块链和通证
1 区块链 简单地说,区块链其实就像是一个不可篡改的分布式数据库,该分布式数据库记录了一系列交易或事件。区块链运行在至少1个以上的节点上,每个节点都有自己的一个分布式数据库,也就是分布式账本。正常情况下,每个节…...
Jvm之垃圾收集器(个人见解仅供参考)
问:什么是垃圾收集算法中的分代收集理论? 答:分代收集理论是垃圾收集算法的一种思想,根据对象存活周期的不同将内存分为几块,一般将java堆分为新生代和老年代。这种理论使得我们可以根据各个年代的特点选择合适的垃圾收…...

Minitab 21软件安装包下载及安装教程
Minitab 21下载链接:https://docs.qq.com/doc/DUkNHZVhwTXhtTFla 1.选中下载好的安装包,鼠标右键解压到”Minitab 21“文件夹 2.选中”Setup.exe“,鼠标右击选择“以管理员身份运行” 3.点击“下一步” 4.点击“是” 5.点击“下一步” 6.勾选…...

Java版商城:Spring Cloud+SpringBoot b2b2c电子商务平台,多商家入驻、直播带货及免 费 小程序商城搭建
随着互联网的快速发展,越来越多的企业开始注重数字化转型,以提升自身的竞争力和运营效率。在这个背景下,鸿鹄云商SAAS云产品应运而生,为企业提供了一种简单、高效、安全的数字化解决方案。 鸿鹄云商SAAS云产品是一种基于云计算的…...
阿里云被拉入黑洞模式怎么办?该怎么换ip-速盾网络
被拉入黑洞模式(BGP黑洞路由)意味着所有进入目标IP的流量都会被丢弃,从而导致目标IP对外完全不可访问。这种情况通常发生在面对大规模DDoS攻击时,为了防止攻击流量对其他网络造成影响。如果你使用的是阿里云服务并遭受到这种攻击&…...
Android 13.0 recovery竖屏界面旋转为横屏
1.概述 在13.0系统项目定制化开发中,由于平板固定横屏显示,而如果recovery界面竖屏显示就觉得怪怪的,所以需要recovery页面横屏显示的功能, 所以今天就来解决这个问题 2.实现功能相关分析 Android的Recovery中,利用 bootable\recovery下的minui库作为基础,采用的是直接…...

异地环控设备如何远程维护?贝锐蒲公英解决远程互联难题
青岛某企业致力于孵化设备、养禽设备和养猪设备的研发、生产和服务,历经三十多年发展,目前已成长为行业主要的养殖装备及工程服务提供商,产品覆盖养殖产业链中绝大多数环节,涉及自动化设备、环控设备、整体解决方案等。 在实际应用…...
flutter 判断是否是web环境
代码如下 import package:flutter/foundation.dart show kIsWeb;void main() {if (kIsWeb) {print(Running on the web!);} else {print(Not running on the web!);} } 如果是使用 Platform.isAndroid 会报错 所以使用上面的方式...

视频智能分析/云存储平台EasyCVR接入海康SDK,通道名称未自动更新该如何解决?
视频监控GB28181平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流,也能…...

后端开发——JDBC的学习(三)
本篇继续对JDBC进行总结: ①通过Service层与Dao层实现转账的练习; ②重点:由于每次使用连接就手动创建连接,用完后就销毁,这样会导致资源浪费,因此引入连接池,练习连接池的使用; …...
Redis 生产环境查找无过期时间的 key
在项目中,Redis 不应该被当作传统数据库来使用;储存大量没有过期时间的数据。如果储存大量无过期时间,而且无效的key的话;再加上 Redis 本身的过期策略没有被正确设置,就会大量占用内存。这样就会导致再多的内存资源也不够用。 情况大致是这样,项目中采用 Redis 二级存储…...
Visual Studio 2017编译Python3.8.18源码
一直纠结Python的开发环境没有升级到最新版3.8.18。这是当前的最新版,正在用的版本3.8.10。他是官方制作出安装包的最新版。 1、准备Visual C 2017的开发环境包括但不限于使用C的桌面开发x64 2、在Python官网下载Python3.8.18的源码。 3、解压缩源码 4、进入控制…...

【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError
【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError 文章目录 【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError1. 报错的具体情况2. 解决过程3. 其他问题3.1 ModuleNotFoundError: No module named OpenGL3.2 ModuleNotFoundEr…...
机器学习的三个方面
1 机器学习的三个方面 1.1 数据 包括数据采集、增强和质量管理,相当于给人工智能模型学习什么样的知识 第一、什么专业的知识; 第二、知识是否有体系,也就是说样本之间是否存在某种关联、差异等,这个涉及到样本选择等问题&#x…...

关于一名资深Java程序员在移动端的进阶之路
今天呢,就借此机会,跟大家聊一聊我的个人职业经历吧! 那年刚毕业 刚毕业时候,入职的第一家公司,进去后,说实话,没有太大成长吧!基本就是让我做一些可有可无的边缘性的工作ÿ…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Springboot 高校报修与互助平台小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,高校报修与互助平台小程序被用户普遍使用,为…...

实现p2p的webrtc-srs版本
1. 基本知识 1.1 webrtc 一、WebRTC的本质:实时通信的“网络协议栈”类比 将WebRTC类比为Linux网络协议栈极具洞察力,二者在架构设计和功能定位上高度相似: 分层协议栈架构 Linux网络协议栈:从底层物理层到应用层(如…...

【靶场】XXE-Lab xxe漏洞
前言 学习xxe漏洞,搭了个XXE-Lab的靶场 一、搭建靶场 现在需要登录,不知道用户名密码,先随便试试抓包 二、判断是否存在xxe漏洞 1.首先登录抓包 看到xml数据解析,由此判断和xxe漏洞有关,但还不确定xxe漏洞是否存在。 2.尝试xxe 漏洞 判断是否存在xxe漏洞 A.send to …...