当前位置: 首页 > news >正文

LeetCode74二分搜索优化:二维矩阵中的高效查找策略

题目描述

力扣地址

给你一个满足下述两条属性的 m x n 整数矩阵:

  • 每行中的整数从左到右按非严格递增顺序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -104 <= matrix[i][j], target <= 104

以右上或左下为起点进行搜索 

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int row =  matrix.length;int col =  matrix[0].length;int i = 0;int j = col-1;while(i>-1 && i<row && j>-1 && j<col){if(matrix[i][j] < target){i++;}else if(matrix[i][j] > target){j--;}else{return true;}}return false;}
}

这种解法效率不高需要用二分来优化,这道题目描述的矩阵具有两个关键属性:

  1. 每行中的整数从左到右按非严格递增顺序排列。
  2. 每行的第一个整数大于前一行的最后一个整数。

由于这两个属性,虽然矩阵是二维的,但它可以被视为一个一维的有序数组。具体来说,如果我们将这个矩阵“展开”成一个一维数组,这个数组将是有序的。这使得我们可以在这个虚拟的一维数组上应用二分查找算法。

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int row = matrix.length;int col = matrix[0].length;int left = 0;int right = row * col - 1;while (left <= right) {int midIndex = left + (right - left) / 2;int midValue = matrix[midIndex / col][midIndex % col];if (midValue == target) {return true;} else if (midValue < target) {left = midIndex + 1;} else {right = midIndex - 1;}}return false;}
}

LeetCode378之有序矩阵中第 K 小的元素(相关话题:优先队列,二分) 

这道题不具备每行的第一个整数大于前一行的最后一个整数这个属性所以不能直接把二维矩阵转化为一维数据进行二分。而是直接对矩阵里的最大值和最小值进行二分。

相关文章

LeetCode之团灭旋转数组(相关话题:减治,二分,分治)_target的最小数的下标-CSDN博客

LeetCode287之寻找重复数(相关话题:二分查找,快慢指针)-CSDN博客

LeetCode287之寻找重复数(相关话题:位运算,抽屉原理)_442. 数组中重复的数据 leetcode python-CSDN博客

算法模板(一)(相关话题:二分搜索)_if (left >= nums.length || nums[left] != target) r-CSDN博客

​​​​​​​​​​​​LeetCode378之有序矩阵中第 K 小的元素(相关话题:优先队列,二分)_java给你一个 n x n 矩阵 matrix ,其中每行和每列元素均按升序排序,找到矩阵中第-CSDN博客

LeetCode1095.之山脉数组中查找目标值(相关话题:多重二分)-CSDN博客

相关文章:

LeetCode74二分搜索优化:二维矩阵中的高效查找策略

题目描述 力扣地址 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 target 在矩阵中&#xff0c;返回 true &#xff1b;否则&…...

三极管组成的光控开关电路原理图

什么是光控开关 光控开关/光控时控器采用先进的嵌入式微型计算机控制技术&#xff0c;融光控功能和普通时控器两大功能为一体的多功能高级时控器&#xff08;时控开关&#xff09;&#xff0c;根据节能需要可以将光控探头&#xff08;功能&#xff09;与时控功能同时启用&…...

【PostgreSQL】从零开始:(四十二)系统列

PostgreSQL 中的系统列 PostgreSQL 中的系统列是一组特殊的列&#xff0c;用于存储关于表和视图的元数据信息。这些列是由 PostgreSQL 数据库自动创建和维护的&#xff0c;并且不能直接修改或删除。 每个表都有多个系统列&#xff0c;这些列由系统隐式定义。因此&#xff0c;…...

快速、准确地检测和分类病毒序列分析工具 ViralCC的介绍和详细使用方法, 附带应用脚本

介绍 viralcc是一个基因组病毒分析工具&#xff0c;可以用于快速、准确地检测和分类病毒序列。 github&#xff1a;dyxstat/ViralCC: ViralCC: leveraging metagenomic proximity-ligation to retrieve complete viral genomes (github.com) Instruction of reproducing resul…...

DNs服务学习笔记

DNS&#xff1a;域名系统&#xff08;英文&#xff1a;Domain Name System)是一个域名系统&#xff0c;是万维网上作为域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使用户更方便的访问互联网&#xff0c;而不用去记住能够被机器直接读取的IP数串。类似于生活中的11…...

获取线程池中任务执行数量

获取线程池中任务执行数量 通过线程池进行任务处理&#xff0c;有时我们需要知道线程池中任务的执行状态。通过ThreadPoolExecutor的相关API实时获取线程数量&#xff0c;排队任务数量&#xff0c;执行完成线程数量等信息。 实例 private static ExecutorService es new Thr…...

RK3566 Android 11平台上适配YT8512C 100M PHY

RK3566代码之前适配的1000M IC RTL8211F , 现在需要在之前的基础上修改PHY IC 为裕泰的YT8512C ----------------------------------------------------------------------//将1000M 的配置关掉&#xff0c;改为100M 配置,查看RK3566 资料关于以太网的配置即可知道如何修改 #if…...

docker 部署haproxy cpu占用特别高

在部署mysql 主主高可用时&#xff0c;使用haproxy进行负载&#xff0c;在服务部使用的情况下发现服务器cpu占比高&#xff0c;负载也高&#xff0c;因此急需解决这个问题。 1.解决前现状 1.1 部署配置文件 cat > haproxy.cfg << EOF globalmaxconn 4000nbthrea…...

Oracle导出CSV文件

利用spool spool基本格式&#xff1a; spool 路径文件名 select col1||,||col2||,||col3||,||col4 from tablename; spool off spool常用的设置&#xff1a; set colsep ;    //域输出分隔符 set echo off;    //显示start启动的脚本中的每个sql命令&#xff0c;缺…...

图像分割实战-系列教程12:deeplab系列算法概述

&#x1f341;&#x1f341;&#x1f341;图像分割实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 1、deeplab概述 图像分割中的传统做法&#xff1a;为了增大感受野&#xff0c;通常都会选择pooling…...

数据库02-07 存储

计算机存储系统&#xff1a; 02.磁道存储...

WPF 入门教程DispatcherTimer计时器

https://www.zhihu.com/tardis/bd/art/430630047?source_id1001 在 WinForms 中&#xff0c;有一个名为 Timer 的控件&#xff0c;它可以在给定的时间间隔内重复执行一个操作。WPF 也有这种可能性&#xff0c;但我们有DispatcherTimer控件&#xff0c;而不是不可见的控件。它几…...

【教学类-43-04】20231229 N宫格数独4.0(n=2,4,6,8) (ChatGPT AI对话大师生成 回溯算法)

作品展示&#xff1a; 背景需求&#xff1a; 幼儿表示自己适合做5宫格 第一次AI生成九宫格数独python代码 【教学类-43-03】20231229 N宫格数独3.0&#xff08;n1、2、3、4、6、8、9&#xff09; &#xff08;ChatGPT AI对话大师生成&#xff09;-CSDN博客文章浏览阅读162次&…...

WPF美化ItemsControl1:不同颜色间隔

首先我们有的是一个绑定好数据的ItemsControl <ItemsControl ItemsSource"{Binding Starts}"> </ItemsControl> 运行后呢是朴素的将数据竖着排列 如果想要数据之间有间距&#xff0c;可以使用数据模板&#xff0c;将数据放到TextBlock中显示&#xff0…...

查看进程对应的路径查看端口号对应的进程ubuntu 安装ssh共享WiFi设置MyBatis 使用map类型作为参数,复杂查询(导出数据)

Linux 查询当前进程所在的路径 top 命令查询相应的进程号pid ps -ef |grep 进程名 lsof -I:端口号 netstat -anp|grep 端口号 cd /proc/进程id cwd 进程运行目录 exe 执行程序的绝对路径 cmdline 程序运行时输入的命令行命令 environ 记录了进程运行时的环境变量 fd 目录下是进…...

医院信息系统集成平台—安全保障体系

​​​​​​隐私保护措施 隐私保护及信息安全是医院信息平台所要重点解决的问题,应从患者同意,匿名化服务,依据病种、角色等多维度授权,关键信息(字段级、记录级、文件级)加密存储等方面展开。电子病历等医疗数据进行调阅时,包括强身份认证需求、角色授权需求、责任认…...

【信息论与编码】习题-填空题

目录 填空题1.克劳夫特不等式是判断&#xff08; &#xff09;的充要条件。2.无失真信源编码的中心任务是编码后的信息率压缩接近到&#xff08;&#xff09;限失真压缩中心任务是在给定的失真度条件下&#xff0c;信息率压缩接近到&#xff08; &#xff09;。3.常用的检纠错方…...

二叉树的层序遍历经典问题(算法村第六关白银挑战)

基本的层序遍历与变换 二叉树的层序遍历 102. 二叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入…...

信息学奥赛一本通:装箱问题

题目链接&#xff1a;http://ybt.ssoier.cn:8088/problem_show.php?pid1917 题目 1917&#xff1a;【01NOIP普及组】装箱问题 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 4117 通过数: 2443 【题目描述】 有一个箱子容量为V&#xfffd;(正整数&#xff0c…...

ReactNative 常见问题及处理办法(加固混淆)

ReactNative 常见问题及处理办法&#xff08;加固混淆&#xff09; 文章目录 摘要引言正文ScrollView内无法滑动RN热更新中的文件引用问题RN中获取高度的技巧RN强制横屏UI适配问题低版本RN&#xff08;0.63以下&#xff09;适配iOS14图片无法显示问题RN清理缓存RN navigation参…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...