当前位置: 首页 > news >正文

图像识别快速实现

文本的跑通了,接下来玩玩图片场景

1. 引入模型

再另起类test_qdrant_img.py,转化图片用到的模型和文本不太一样,我们这里使用ResNet-50模型

import unittest
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client import QdrantClient
import torch
import torchvision.transforms as transforms
from PIL import Imageclass TestQDrantImg(unittest.TestCase):def setUp(self):self.collection_name = "img_collection"self.client = QdrantClient("localhost", port=6333)# 加载ResNet-50模型self.model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True)self.model.eval()# 图像预处理self.preprocess = transforms.Compose([# 图像调整为256*256transforms.Resize(256), # 中心裁剪为224*224transforms.CenterCrop(224), # 转换为张量,像素值从范围[0,255]缩放到范围[0,1],RGB(红绿蓝)转换为通道顺序(即 RGB 顺序)transforms.ToTensor(), # 应用归一化,减去均值(mean)并除以标准差(std)transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

2. 添加图片向量

我们先创建一个新集合

def test_create_collection(self):self.client.create_collection(collection_name=self.collection_name,vectors_config=VectorParams(size=1000, distance=Distance.EUCLID),)

往集合里分别添加1个猫的图片和1个狗的图片

    def test_img_vector(self):# 加载并预处理图像id = 1image_path = './img/cat1.png'# id = 2# image_path = './img/dog1.png'image = Image.open(image_path)image_tensor = self.preprocess(image)# 在第0维度上添加一个维度,将图像张量转换为形状为 (1, C, H, W) 的张量,其中 C 是通道数,H 是高度,W 是宽度image_tensor = torch.unsqueeze(image_tensor, 0)with torch.no_grad():# 去除维度为1的维度,将特征向量的形状从 (1, D) 转换为 (D,)feature_vector = self.model(image_tensor).squeeze().tolist()operation_info = self.client.upsert(collection_name=self.collection_name,points=[{'id': id, 'vector': feature_vector, 'payload': {"image_path": image_path}}])print(operation_info)

3. 匹配图片向量

然后用其他猫狗的图片来做搜索匹配

    def test_search(self):# 加载并预处理图像image_path = './img/cat2.png'# image_path = './img/dog2.png'# image_path = './img/cat3.png'image = Image.open(image_path)image_tensor = self.preprocess(image)image_tensor = torch.unsqueeze(image_tensor, 0)with torch.no_grad():feature_vector = self.model(image_tensor).squeeze().tolist()search_result = self.client.search(collection_name=self.collection_name, query_vector=feature_vector, limit=3, with_vectors=True, with_payload=True)print(search_result)

结果:

[ScoredPoint(id = 1, version = 0, score = 68.21013, payload = {

'image_path': './img/cat1.png'

}, vector = [...]),

ScoredPoint(id = 2, version = 1, score = 85.10757, payload = {

'image_path': './img/dog1.png'

}, vector = [...])]

当使用猫2猫3作为查询条件时,跟猫1记录的score(向量距离)较小;

同理,使用狗2作为查询条件时,跟狗1记录的score(向量距离)较小

相关文章:

图像识别快速实现

文本的跑通了,接下来玩玩图片场景 1. 引入模型 再另起类test_qdrant_img.py,转化图片用到的模型和文本不太一样,我们这里使用ResNet-50模型 import unittest from qdrant_client.http.models import Distance, VectorParams from qdrant_cl…...

一文详解动态 Schema

在数据库中,Schema 常有,而动态 Schema 不常有。 例如,SQL 数据库有预定义的 Schema,但这些 Schema 通常都不能修改,用户只有在创建时才能定义 Schema。Schema 的作用是告诉数据库使用者所希望的表结构,确保…...

Web网页开发-总结笔记2

28.为什么会出现浮动?浮动会带来哪些问题? 1)为什么会出现浮动: 为了页面排版时块元素同行显示 2)浮动带来的问题: 父元素高度崩塌29.清除浮动的方法 (额外标签法、父级overflow、after伪元素、双伪元素) &#xff08…...

C#的StringBuilder方法

一、StringBuilder方法 StringBuilder方法Append()向此实例追加指定对象的字符串表示形式。AppendFormat()向此实例追加通过处理复合格式字符串(包含零个或更多格式项)而返回的字符串。 每个格式项都由相应的对象自变量的字符串表示形式替换。AppendJoi…...

美格智能5G RedCap模组SRM813Q通过广东联通5G创新实验室测试认证

近日,美格智能5G RedCap轻量化模组SRM813Q正式通过广东联通5G创新实验室端到端的测试验收,获颁测评证书。美格智能已连续通过业内两家权威实验室的测试认证,充分验证SRM813Q系列模组已经具备了成熟的商用能力,将为智慧工业、安防监…...

MVCC 并发控制原理-源码解析(非常详细)

基础概念 并发事务带来的问题 1)脏读:一个事务读取到另一个事务更新但还未提交的数据,如果另一个事务出现回滚或者进一步更新,则会出现问题。 2)不可重复读:在一个事务中两次次读取同一个数据时&#xff0c…...

通过国家网络风险管理方法提供安全的网络环境

印度尼西亚通过讨论网络安全法草案启动了其战略举措。不过,政府和议会尚未就该法案的多项内容达成一致。另一方面,制定战略性、全面的网络安全方法的紧迫性从未像今天这样重要。 其政府官方网站遭受了多起网络攻击,引发了人们对国家网络安全…...

input中typedate的属性都有那些

自我扩展‘ type 中date属性 自我 控制编辑区域的 ::-webkit-datetime-edit { padding: 1px; background: url(…/selection.gif); }控制年月日这个区域的 ::-webkit-datetime-edit-fields-wrapper { background-color: #eee; }这是控制年月日之间的斜线或短横线的 ::-webki…...

将PPT4页并排成1页

将PPT4页并排成1页打印 解决方法: 方法一 在打印时选择: 打开 PPT,点击文件选项点击打印点击整页幻灯片点击4张水平放置的幻灯平页面就会显示4张PPT显示在一张纸上 方法二 另存为PDF: 打开电脑上的目标PPT文件,点击文件点击…...

iPhone 恢复出厂设置后如何恢复数据

如果您在 iPhone 上执行了恢复出厂设置,您会发现所有旧数据都被清除了。这对于清理混乱和提高设备性能非常有用,但如果您忘记保存重要文件,那就是坏消息了。 恢复出厂设置后可以恢复数据吗?是的!幸运的是,…...

欧洲最好的AI大模型:Mistral 7B!(开源、全面超越Llama 2)

你可能已经听说过Meta(原Facebook)的Llama 2,这是一款拥有13亿参数的语言模型,能够生成文本、代码、图像等多种内容。 但是你知道吗,有一家法国的创业公司Mistral AI,推出了一款只有7.3亿参数的语言模型&am…...

Python | 诞生、解析器的分类版本及安装

1. python的诞生 Python是一门由Guido van Rossum(龟叔)于1991年创造的高级编程语言。 下图是TIOBE指数(TIOBE Index)的官方网站的截图,TIOBE指数是衡量编程语言流行度的指标之一,截止到目前python排名第…...

vim学习记录

目录 历史记录前言相关资料配置windows互换ESC和Caps Lock按键 基本操作替换字符串 历史记录 2024年1月2日, 搭建好框架,开始学习; 前言 vim使用很久了,但是都是一些基本用法,主要是用于配置Linux,进行一些简单的编写文档和程序.没有进行过大型程序开发,没有达到熟练使用的程…...

bat脚本:将ini文件两行值转json格式

原文件 .ini:目标转换第2行和第三行成下方json [info] listKeykey1^key2^key3 listNameA大^B最小^c最好 ccc1^2^3^ ddd0^1^9目标格式 生成同名json文件,并删除原ini文件 [ { "value":"key1", "text":"A大" …...

scratch绘制小正方形 2023年12月中国电子学会图形化编程 少儿编程 scratch编程等级考试四级真题和答案解析

目录 scratch绘制小正方形 一、题目要求 1、准备工作 2、功能实现 二、案例分析...

【产品应用】一体化伺服电机在管道检测机器人中的应用

一体化伺服电机在管道检测机器人的应用正日益受到关注。管道检测机器人是一种能够在管道内部进行检测和维护的智能化设备,它可以检测管道的内部结构、泄漏、腐蚀等问题,以确保管道的安全和稳定运行。而一体化伺服电机作为机器人的动力源,对于…...

Django在urls.py利用函数path()配置路由时传递参数给调用的视图函数的方法

01-单个参数的传递 问:在urls.py利用函数path()配置路由时能不能传递一些参数给调用的视图函数?因为我有很多路由调用的其实是同一个视图函数,所以希望能传递一些额外的参数。比如路由的PATH信息如果能传递就好了。 答:在Django中…...

Ubuntu20 编译 Android 12源码

1.安装基础库 推荐使用 Ubuntu 20.04 及以上版本编译,会少不少麻烦,以下是我的虚拟机配置 执行命令安装依赖库 // 第一步执行 update sudo apt-get update//安装相关依赖sudo apt-get install -y libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-de…...

RFID传感器|识读器CNS-RFID-01/1S在AGV小车|搬运机器人领域的安装与配置方法

AGV 在运行时候需要根据预设地标点来执行指令,在需要 AGV 在路径线上位置执行某个指令时候,则需要在这个点设置 命令地标点,AGV 通过读取不同地标点编号信息,来执行规定的指令。读取地标点设备为寻址传感器,目前&#…...

用友U8 Cloud smartweb2.RPC.d XML外部实体注入漏洞

产品介绍 用友U8cloud是用友推出的新一代云ERP,主要聚焦成长型、创新型、集团型企业,提供企业级云ERP整体解决方案。它包含ERP的各项应用,包括iUAP、财务会计、iUFO cloud、供应链与质量管理、人力资源、生产制造、管理会计、资产管理&#…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...