当前位置: 首页 > news >正文

学习ing

记录

1.光圈的大小由一个称为“F值”的数字表示,这个数字越小,光圈就越大,光线也就越多。一般来说,使用较小的F值可以拍摄出更亮的照片,而使用较大的F值可以拍摄出更暗的照片。

2.光圈可以控制相机的曝光时间,因为当光圈口径越大,光线量越多,曝光时间也会越长。

3.在拍摄照片时,相机景深是一个非常重要的概念。它可以控制照片中物体的清晰度,也可以控制照片中景物的深度和广度。相机景深的控制主要取决于光圈的大小,快门的速度以及焦距的长短。光圈的大小越小,景深就越大;快门的速度越快,景深就越小;焦距越长,景深就越小。

相关文章:

学习ing

记录 1.光圈的大小由一个称为“F值”的数字表示,这个数字越小,光圈就越大,光线也就越多。一般来说,使用较小的F值可以拍摄出更亮的照片,而使用较大的F值可以拍摄出更暗的照片。 2.光圈可以控制相机的曝光时间&#x…...

linux下数据库定时备份

1.编写shell脚本 #!/bin/bash USER"root" PASSWORD"Root.36#336" DATABASE"backup_test" HOSTNAME"127.0.0.1" DATEdate %Y%m%d_%H%M%S #日期格式(作为文件名) BACKUP_DIR/home/mysql/DB_backup/ #备份文件存…...

Qt/QML编程学习之心得:QSocketNotifier(二十一)

QSocketNotifier在Qt中怎么使用? QSocketNotifier使Qt的事件循环与其他基于文件描述符的事件循环集成成为可能。在Qt的主事件循环(QCoreApplication::exec())中检测到文件描述符操作。 使用低级(通常是特定于平台的)API打开设备后,可以创建一个套接字通知程序来监视文…...

【linux】lsblk和df -h显示的磁盘信息不同

【问题分析】 lsblk 查看的是block device,也就是逻辑磁盘大小。 df查看的是file system, 也就是文件系统层的磁盘大小。 这种情况应该是block device容量变大,单还没有反映到file system中。 【问题解决】 如果是ext{2,3,4}文件系统的话,可以用res…...

如何开发属于自己的小程序?

随着移动互联网的快速发展,小程序已成为一种不可忽视的力量。对于许多企业和个人而言,拥有一个属于自己的小程序不仅能提高品牌曝光度,还能带来实实在在的收益。那么,如何开发属于自己的小程序呢?本文将为你揭秘这一过…...

湖仓架构的演进

1.数据仓库架构的历史演进 起初,业界数据处理首选方式是数仓架构。通常数据处理的流程是把一些业务数据库,通过ETL的方式加载到Data Warehouse中,再在前端接入一些报表或者BI的工具去展示。 数据仓库概念是 Inmon 于 1990 年提出并给出了完…...

【头歌实训】Spark MLlib ( Python 版 )

文章目录 第1关:基本统计编程要求测试说明答案代码 第2关:回归编程要求测试说明参考资料答案代码 第3关:分类编程要求测试说明参考资料答案代码 第4关:协同过滤编程要求测试说明参考资料答案代码 第5关:聚类编程要求测…...

Java基础进阶(学习笔记)

注:本篇的代码和PPT图片来源于黑马程序员,本篇仅为学习笔记 static static 是静态的意思,可以修饰成员变量,也可以修饰成员方法 修饰成员的特点: 被其修饰的成员, 被该类的所有对象所共享 多了一种调用方式, 可以通过…...

uView NoticeBar 滚动通知

该组件用于滚动通告场景&#xff0c;有多种模式可供选择 #平台差异说明 App&#xff08;vue&#xff09;App&#xff08;nvue&#xff09;H5小程序√√√√ #基本使用 通过text参数设置需要滚动的内容 <template><view><u-notice-bar :text"text1&quo…...

外包干了3个多月,技术退步明显。。。。。

先说一下自己的情况&#xff0c;本科生生&#xff0c;19年通过校招进入广州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…...

JSON的一些资源

以下是一些推荐的学习资源&#xff1a; 1. **官方网站**: - JSON.org: 这是一个很好的起点&#xff0c;它提供了JSON的基本介绍和语法规则。 2. **在线教程和课程**: - CSDN全方面学习各种资源。 - W3Schools (w3schools.com): 提供了一个关于JSON的教程&#xff0c;涵…...

最优化理论期末复习笔记 Part 1

数学基础线性代数 从行的角度从列的角度行列式的几何解释向量范数和矩阵范数 向量范数矩阵范数的更强的性质的意义 几种向量范数诱导的矩阵范数 1 范数诱导的矩阵范数无穷范数诱导的矩阵范数2 范数诱导的矩阵范数 各种范数之间的等价性向量与矩阵序列的收敛性 函数的可微性与展…...

鸿蒙应用中的通知

目录 1、通知流程 2、发布通知 2.1、发布基础类型通知 2.1.1、接口说明 2.1.2、普通文本类型通知 2.1.3、长文本类型通知 2.1.4、多行文本类型通知 2.1.5、图片类型通知 2.2、发布进度条类型通知 2.2.1、接口说明 2.2.2、示例 2.3、为通知添加行为意图 2.3.1、接…...

如何停止一个运行中的Docker容器

要停止一个运行中的Docker容器&#xff0c;你可以使用以下命令&#xff1a; docker stop <容器ID或容器名> 将 <容器ID或容器名> 替换为你要停止的具体容器的标识符或名称。你可以使用以下命令查看正在运行的容器&#xff1a;docker ps 这将列出所有正在运行的…...

Linux第19步_安装“Ubutun交叉编译工具链”

由于Ubuntu系统使用的GCC编译器&#xff0c;编译结果是X86文件&#xff0c;只能在X86上运行&#xff0c;不能在ARM上直接运行。因此&#xff0c;还要安装一个“Ubutun交叉编译工具链”&#xff0c;才可以在ARM上运行。 arm-none-linux-gnueabi-gcc是 Codesourcery 公司&#x…...

【论文阅读笔记】 Representation Learning with Contrastive Predictive Coding

Representation Learning with Contrastive Predictive Coding 摘要 这段文字是论文的摘要&#xff0c;作者讨论了监督学习在许多应用中取得的巨大进展&#xff0c;然而无监督学习并没有得到如此广泛的应用&#xff0c;仍然是人工智能中一个重要且具有挑战性的任务。在这项工作…...

CNN——LeNet

1.LeNet概述 LeNet是Yann LeCun于1988年提出的用于手写体数字识别的网络结构&#xff0c;它是最早发布的卷积神经网络之一&#xff0c;可以说LeNet是深度CNN网络的基石。 当时&#xff0c;LeNet取得了与支持向量机&#xff08;support vector machines&#xff09;性能相…...

分类模型评估方法

1.数据集划分 1.1 为什么要划分数据集? 思考&#xff1a;我们有以下场景&#xff1a; 将所有的数据都作为训练数据&#xff0c;训练出一个模型直接上线预测 每当得到一个新的数据&#xff0c;则计算新数据到训练数据的距离&#xff0c;预测得到新数据的类别 存在问题&…...

RabbitMQ高级

文章目录 一.消息可靠性1.生产者消息确认 MQ的一些常见问题 1.消息可靠性问题:如何确保发送的消息至少被消费一次 2.延迟消息问题:如何实现消息的延迟投递 3.高可用问题:如何避免单点的MQ故障而导致的不可用问题 4.消息堆积问题:如何解决数百万消息堆积&#xff0c;无法及时…...

SonarQube 漏洞扫描

SonarQube 漏洞扫描 一、部署服务 1.1 docker方式部署 #安装docker curl -L download.beyourself.org.cn/shell-project/os/get-docker-latest.sh | sh yum install -y docker-compose #进去输入:set paste可以保证不穿行 [rootlocalhost sonar]# vim docker-compose.yml v…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...