ChatGPT绘制全球植被类型分布图、生物量图、土壤概念图、处理遥感数据并绘图、病毒、植物、动物细胞结构图
以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。本课程通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。
靳老师:18031211455 微信
专题一、开启大模型
1 开启大模型
1)大模型的发展历程与最新功能
2)大模型的算法构架与底层逻辑
3)大模型的强大功能与应用场景
4)国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)
5)如何优雅使用大模型
案例1.1:开启不同平台的大模型
案例1.2:GPT不同版本的使用
案例1.3:大模型文件上传和处理
专题二、基于ChatGPT大模型提问框架
2 提问框架(提示词、指令)
1)专业大模型提示词,助你小白变专家
2)超实用的通用提示词和提问框架
3)高级提问技巧
案例2.1:设定角色与投喂规则
案例2.2:行业专家指令合集
案例2.3:角色扮演与不同角度提问
案例2.4:分步提问与上下文关联
案例2.5:经典提问框架练习,提升模型效率
专题三、基于ChatGPT大模型的数据清洗
3 基于ChatGPT的数据清洗
1)R语言和Python基础(勿需学会,能看懂即可)
2)数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)
案例3.1:使用大模型指令随机生成数据
案例3.2:使用大模型指令读取数据
案例3.3:使用大模型指令进行数据清洗
案例3.4:使用大模型指令对农业气象数据进行预处理
案例3.5:使用大模型指令对生态数据进行预处理
专题四、基于ChatGPT大模型的统计分析
4 基于AI大模型的统计分析
1)统计假设检验
2) 统计学三大常用检验及其应用场景
3) 方差分析、相关分析、回归分析
4) 混合线性模型
5) Meta分析
案例4.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验
案例4.2:使用大模型进行t检验、F检验和卡方检验
案例4.3:使用大模型指令对生态环境数据进行方差分析、相关分析及回归分析
案例4.4:使用大模型指令构建混合线性模型
案例4.5:使用大模型指令对文献收集数据进行Meta分析

专题五、基于ChatGPT大模型的机器学习
5 基于AI大模型的机器/深度学习(无需代码基础即可实现)
1)机器/深度学习
2)机器学习监督学习(回归、分类)、非监督学习(降维、聚类)
3)特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优
1)深度学习算法(神经网络、激活函数、交叉熵、优化器)
2)Pytorch基础
3)卷积神经网络、长短期记忆网络(LSTM)
案例5.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)
案例5.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)
案例5.3:使用大模型指令构建降维模型
案例5.4:使用大模型指令构建聚类模型
案例5.5:使用大模型指令构建深度学习模型,预测气象数据
案例5.6:使用大模型指令构建深度学习模型,进行图像识别

专题六、基于ChatGPT大模型的科研绘图
6 基于AI大模型的科研绘图
1)使用大模型进行数据可视化
案例6.1:大模型科研绘图指定全集
案例6.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、环形热图、气泡图、森林图、三元图等各类科研图
案例6.3:使用大模型指令对图形进行修改

专题七、基于ChatGPT大模型的GIS应用
7 基于AI大模型的GIS应用
1)使用大模型进行空间数据处理
2)使用大模型训练降尺度模型
3)使用大模型绘制矢量图
4)使用大模型绘制栅格图
案例7.1:使用大模型绘制全球地图
案例7.2:使用大模型绘制NASA气象数据分布图
案例7.3:使用大模型绘制全球植被类型分布图
案例7.4:使用大模型绘制全球植被生物量图
案例7.5:使用大模型处理遥感数据并绘图


专题八、基于基于ChatGPT大模型的论文助手
8 基于AI大模型的论文助手
案例8.1:大模型论文润色指令大全
案例8.2:使用大模型进行论文润色
案例8.3:使用大模型对英文文献进行搜索
案例8.4:使用大模型对英文文献进行问答和辅助阅读
案例8.5:使用大模型提取英文文献关键信息
案例8.6:使用大模型对论文进行摘要重写
案例8.7:使用大模型取一个好的论文标题
案例8.8:使用大模型写论文框架
案例8.9:使用大模型对论文进行翻译
案例8.10:使用大模型对论文进行评论,辅助撰写审稿意见
案例8.11:使用大模型对论文进行降重
案例8.12:使用大模型查找研究热点
案例8.13:使用大模型对你的论文凝练成新闻和微信文案
案例8.14:使用大模型辅助专著、教材、课件的撰写
专题九、基于基于ChatGPT大模型的项目基金助手
9 基于AI大模型的项目基金助手
1)基金申请讲解
2)基因申请助手
案例9.1:使用大模型进行项目选题
案例9.2:使用大模型进行项目书语言润色
案例9.3:使用大模型进行项目书图表制作
专题十、基于大模型的AI绘图
10基于大模型的AI绘图
GPT、Midjourney、Stable Diffusion生成图片讲解及环境部署
1)AI画图指令介绍
案例10.1:使用大模型进行图像识别
案例10.2:使用大模型生成图像指令合集
案例10.3:使用大模型指令生成概念图
案例10.4:使用大模型指令生成地球氮循环概念图
案例10.5:使用大模型指令生成土壤概念图
案例10.6:使用大模型指令生成病毒、植物、动物细胞结构图
案例10.7:使用大模型指令生成概念图图片素材




关注科研技术平台获取更多资源
相关文章:
ChatGPT绘制全球植被类型分布图、生物量图、土壤概念图、处理遥感数据并绘图、病毒、植物、动物细胞结构图
以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…...
vmware workstation的三种网络模式通俗理解
一、前言 workstations想必很多童鞋都在用,经常会用来在本机创建不同的虚拟机来做各种测试,那么对于它支持的网络模式,在不同的测试场景下应该用哪种网络模式,你需要做下了解,以便可以愉快的继续测(搬&…...
C++程序设计兼谈对象模型(侯捷)笔记
C程序设计兼谈对象模型(侯捷) 这是C面向对象程序设计的续集笔记,仅供个人学习使用。如有侵权,请联系删除。 主要内容:涉及到模板中的类模板、函数模板、成员模板以及模板模板参数,后面包含对象模型中虚函数调用&…...
selenium实现UI自动化
1.selenium简介 selenium是支持web浏览器自动化的一系列工具和库的综合项目。具有支持linux、windows等多个平台,支持Firefox、chrome等多种主流浏览器;支持Java、Python等多种语言。 主要包括的三大工具有: WebDriver(rc 1.0)、…...
【DevOps-03】Build阶段-Maven安装配置
一、简要说明 下载安装JDK8下载安装Maven二、复制准备一台虚拟机 1、VM虚拟复制克隆一台机器 2、启动刚克隆的虚拟机,修改IP地址 刚刚克隆的虚拟机 ,IP地址和原虚拟的IP地址是一样的,需要修改克隆后的虚拟机IP地址,以免IP地址冲突。 # 编辑修改IP地址 $ vi /etc/sysconfig…...
已解决java.lang.ArrayIndexOutOfBoundsException异常的正确解决方法,亲测有效!!!
已解决java.lang.ArrayIndexOutOfBoundsException异常的正确解决方法,亲测有效!!! 目录 报错问题 解决思路 解决方法 总结 Q1 - 报错问题 java.long.ArrayIndexOutOfBoundsException 是Java中的一个运行时异常,…...
Pycharm打包程序为exe文件
Pycharm打包程序为exe文件 【一】导入模块pyinstaller 【1】图片说明 【2】文字说明 根据图片顺序执行 首先点击file进入settings界面,在setting界面找到Project下面的Python Interpretor,点击号进行模块的添加在搜索框中输入pyinstaller,…...
地理空间分析3——数据可视化与地理空间
写在开头 数据可视化是将数据以图形形式呈现,使其更易于理解和分析的过程。在地理空间分析中,数据可视化不仅能够展示地理位置信息,还能够有效地传达地理空间数据的模式、趋势和关联。本文将探讨数据可视化在地理空间分析中的作用,介绍Python中常用的数据可视化工具,并深…...
python开发案例教程-清华大学出版社(张基温)答案(4.3)
练习 4.1 1. 判断题 判断下列描述的对错。 (1)子类是父类的子集。 ( ✖ ) (2)父类中非私密的方法能够被子类覆盖。 ( ✔ ) (3)子类…...
Qt 5.9.4 转 Qt 6.6.1 遇到的问题总结(一)
最近公司对大家的开发的硬件环境进行了升级,电脑主机的配置、显示器(两台大屏显示器)变得的逼格高多了。既然电脑上的开发环境都需要重装,就打算把开发环境也升级到最新版本,要用就用最新版本。下面对升级后的开发环境…...
探索生成式AI:自动化、问题解决与创新力
目录 自动化和效率:生成式AI的颠覆力量 解谜大师生成式AI:如何理解和解决问题 创新与创造力的启迪:生成式AI的无限潜能 自动化和效率:生成式AI的颠覆力量 1. 神奇的代码生成器:生成式AI可以帮助开发人员像魔术一样快…...
UI5与后端的文件交互(一)
文章目录 前言一、RAP的开发1. 创建表格2. 创建CDS Entity3. 创建BDEF4. 创建implementation class5. 创建Service Definition和Binding6. 测试API 二、创建UI5 Project1. 使用Basic模板创建2. 创建View3. 测试页面及绑定的oData数据是否正确4. 创建Controller5. 导入外部包&am…...
[HCTF 2018]Warmup
[HCTF 2018]Warmup wp 进入页面: 查看源码: 发现提示:source.php ,直接访问,得到源代码: <?phphighlight_file(__FILE__);class emmm{public static function checkFile(&$page){$whitelist [&qu…...
编译原理笔记(三)
一、词法分析程序的设计 1、词法分析程序的输出 在识别出下一个单词同时验证其词法正确性之后,词法分析程序将结果以单词符号的形式发送至语法分析程序以回应其请求。 单词符号一般分下列5类: 关键字:如:begin、end、if、whil…...
DDoS攻击的多种方式
DDOS攻击指分布式拒绝服务攻击,即处于不同位置的多个攻击者同时向一个或数个目标发动攻击,或者一个攻击者控制了位于不同位置的多台机器并利用这些机器对受害者同时实施攻击。由于攻击的发出点是分布在不同地方的,这类攻击称为分布式拒绝服务…...
SpringValidation自定义注解以及分组校验
SpringValidation的参数校验使用可参考:【SpringMVC应用篇】Spring Validation 参数校验-CSDN博客 目录 1. 引入依赖 2. 自定义注解校验 2.1 创建Validation类 2.2 创建注解对象 2.3 使用注解 3. 分组校验 3.1 实体类内部定义接口 3.2 在参数上指定分组 1. …...
Multisim各版本安装指南
Multisim下载链接 https://pan.baidu.com/s/1En9uUKafhGOqo57V5rY9dA?pwd0531 1.鼠标右击【Multisim 14.3(64bit)】压缩包(win11及以上统需先点击“显示更多选项”)选择【解压到 Multisim 14.3(64bit)】。 2.打开解压后的文件夹,双击打开【…...
大学生搜题软件,未来可期吗?
作为一家专注于软件开发的公司《智创有术》,我们致力于为客户提供创新、高效和可靠的解决方案。通过多年的经验和专业知识,我们已经在行业内建立了良好的声誉,并赢得了客户的信任和支持。 支持各种源码,网站搭建,APP&a…...
JMeter使用
目录 启动JMeter 创建线程组 设置线程参数 设置http请求参数 编辑 创建查看结果树(显示成功/失败多少以及返回结果等信息) 创建聚合报告(显示响应时间、吞吐量、异常数等信息) 点击上方的执行按钮即可开始压力测试 结果树显示 聚合报告结果显示 启动JMeter 在JMete…...
ChatGPT 进行 SEO的使用技巧
搜索引擎优化 (SEO) 是使网站对搜索引擎友好的一种不断发展的实践。 自搜索引擎和新兴技术的发展以来,它从未保持不变。 最近发布的 ChatGPT 是一种人工智能对话工具,似乎在搜索引擎优化方面有很好的应用。 从创建吸引人的标题到只需一个简短的提示就可…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
