当前位置: 首页 > news >正文

如何充值GPT会员账号?

详情点击链接:如何充值GPT会员账号?

一OpenAI

1.最新大模型GPT-4 Turbo
2.最新发布的高级数据分析,AI画图,图像识别,文档API

3.GPT Store

4.从0到1创建自己的GPT应用

5. 模型Gemini以及大模型Claude2
二定制自己的GPTs

1.自定义GPTs使用

2.聊天交流的方式制作自己的GPTs

3.自定义的方式制作自己的GPTs

4.GPTs的3种分发方式

5.GPTs的action功能

6.论文改进专家(GTPs)

7.论文搜索(GTPs)

8.论文写作(GTPs)

三AIGC基础

1.深度学习常用架构

2.GPT1-4模型

3.AIGC技术

4.大语言模型的评估标准

5.LLM与搜索引擎:差异与联系

四提示词工程高级技巧

1.提示词工程

2.如何写好一篇论文的提示词

3.初识LLM:角色扮演的艺术

4.调整LLM的语调与表达方式

5.定义LLM的具体任务与目标

6.探索LLM与上下文的密切关系

7.零样本:强化逻辑推理

8.多样本:模型模仿能力提升

9.自洽性检验:数学能力加强

10.知识生成:提高模型的信息处理能力

图片

五GPT/GPT4
1.GPT/GPT4是最好用的翻译软件

2.AI助力高效表格数据创建

3.AI在数据处理中的实际操作

4.苏格拉底式教学法在AI中的运用

5.如何与AI交流科研问题

6.AI助力文本数据整理与分析

7.AI在用户评论分析中的应用

8.AI撰写专业报告的技巧

9.让AI根据知识点出题

10.使用AI工具快速产出高端PPT的4种方法

11.使用AI工具快速产出短视频

12.快速制作流程图和思维导图

图片

图片

六GPT/GPT4成为你的论文助手

1.论文搜索和论文关联

2.分析论文得出审稿意见

3.进行论文内容问答

4.生成论文摘要

5.写论文综述并标注内容来源

6.中/英文论文润色的4种方法

7.进行论文降重的技巧

8.查找某个观点或内容相关的论文

9.对多篇论文进行分析对比

10.如何防止AI生成的内容被检测

11.生成完整长篇论文的技巧

12.让AI结合试验数据进行写作

图片


七python基础

1.python的应用场景

2.python环境安装配置

3.print使用

4.运算符和变量

5.循环

6.列表元组字典

7.if条件

8.函数

9.模块

10.类的使用

11.文件读写

12.异常处理

图片

八科学计算模块Numpy和绘图模块Matplotlib

1.numpy的属性

2.创建array

3.numpy的运算

4.随机数生成以及矩阵的运算

5.numpy的索引

6.array合并

7.Matplotlib基础用法

8.figure图像

9.设置坐标轴

10.legend图例

11.scatter散点图

图片

九机器学习算法应用

1.机器学习

2.训练集/验证集/测试集

3.监督学习与无监督学习

4.分类/回归/聚类算法

5.机器学习算法应用分析

6.使用回归算法完成波士顿房价预测

7.使用KNN算法完成鸢尾花分类

8.使用多种算法完成糖尿病预测

9.分析特征重要性

10.机器学习特征工程完整流程

图片

十深度学习算法基础

1.单层感知器

2.激活函数,损失函数和梯度下降法

3.BP算法

4.梯度消失问题

5.多种激活函数介绍

6.BP算法解决手写数字识别问题

图片

十一深度学习框架Tensorflow应用
1.Mnist数据集和softmax

2.使用BP神经网络识别图片

3.交叉熵(cross-entropy)

4.欠拟合/正确拟合/过拟合

5.各种优化器Optimizer

6.模型保存和模型载入方法

图片

十二深度学习算法-卷积神经网络CNN应用

1.CNN卷积神经网络

2.卷积的局部感受野,权值共享。

3.卷积的具体计算方式

4.池化层介绍(均值池化、最大池化)

5.same padding和valid padding介绍

6.LeNET-5卷积网络

7.CNN手写数字识别

图片

十三深度学习算法-长短时记忆网络LSTM应用

1.RNN循环神经网络

2.RNN具体计算分析

3.长短时记忆网络LSTM
4.输入门,遗忘门,输出门具体计算分析

5.堆叠LSTM

6.双向LSTM

7.使用LSTM进行设备故障预测

图片

十四基于深度学习模型的图像识别

1.VGG16模型

2.ResNet模型

3.EfficientNet模型

4.下载训练好的1000分类图像识别模型

5.使用训练好的图像识别模型进行各种图像分类

6.使用迁移学习训练自己的天气现象分类模型

图片

十五让ChatGPT/GPT4成为你的编程助手

1.使用ChatGPT/GPT4写程序的注意事项

2.AI对代码

3.进行代码纠错及自动修改

4.使用AI工具读取本地数据的技巧

5.绘制折线图,柱状图,饼图等各种统计分析图表

6.让AI工具帮你自动进行数据分析和特征工程

7.使用你的数据产生机器学习模型进行分类预测

8.根据你的数据产生深度学习模型进行回归预测

9.自动化AI编程助手的使用

图片

十六让ChatGPT/GPT4进行数据处理

1.让AI正确读取表格数据

2.让AI理解百万行数据

3.使用AI进行数据可视化

4.使用AI进行数据缺失值处理

5.使用AI进行数据归一化

6.使用AI进行特征筛选

7.使用AI输出表格数据

8.使用AI输出特征工程处理后的数据

9.使用AI绘制统计分析图表

图片

图片

十七GPT/GPT4在地球科学方面的应用

1.用GPT绘制世界地图海岸线

2.用GPT绘制不同的地图投影

3.用GPT绘制南极地投影

4.用GPT绘制地球各种关键变量的图

5.用GPT绘制台风总降水量图

6.用GPT绘制台风风速图

7.用GPT计算台风总降水量

8.用GPT对遥感图像光谱数据进行机器学习建模分类

十八ChatGPT/GPT4高级开发应用

1.GPT模型API接口程序使用

2.GPT模型参数调节

3.用GPT程序API接口制作聊天机器人

4.用GPT程序API接口制作自动订餐机器人

5.用GPT程序API批量处理大量文本数据

6.用DALLE-3程序API接口生成图片

7.GPT4本地文件上传功能使用

8.GPT4联网功能使用

9.GPT4图像识别功能应用

10.GPT高级数据分析功能

十九AI绘图工具Midjourney和DALLE3应用

1. AI画图原理

2.Midjourney工具的基础操作

3.remix模式

4.blend命令

5.describe命令

6.图生图通过图片生成新的图片

7.Midjourney的参数和设置

8.Midjourney科研作图

9.DALL-E 3模型

10.DALL-E 3根据上下文内容修改图片

11.DALL-E 3在图像中生成特定文字

12.DALL-E 3绘图结果的不断优化

图片

图片

二十AI绘图工具Stable Diffusion基础应用

1.Stable Diffusion工具

2.Stable Diffusion环境部署

3.通过文字生成图片

4.通过图片生成图片

5.图像智能高清算法

6.使用Lora模型产生写实人物图像

7.进行图像的局部重绘

8.Controlnet插件

9.使用线稿图生成装修和建筑

10.使用线稿图给图片上色

11.产生特定姿态的人物图像

图片

图片

相关文章:

如何充值GPT会员账号?

详情点击链接:如何充值GPT会员账号? 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析,AI画图,图像识别,文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Claude2二定制自己的…...

设计模式:单例模式

文章目录 1、概念2、实现方式1、懒汉式2、饿汉式3、双检锁/双重校验锁4、登记式/静态内部类5、枚举6、容器实现单例 1、概念 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创…...

启动 Mac 时显示闪烁的问号

启动 Mac 时显示闪烁的问号 如果启动时在 Mac 屏幕上看到闪烁的问号,这意味着你的 Mac 无法找到自身的系统软件。 如果 Mac 启动时出现闪烁的问号且无法继续启动,请尝试以下步骤。 1.通过按住其电源按钮几秒钟来关闭 Mac。 2.按一下电源按钮&#xf…...

十种编程语言的对比分析

在当今的软件开发领域,编程语言扮演着至关重要的角色。不同的编程语言各有其特点和适用场景,选择合适的编程语言能够提高开发效率和软件质量。本文将对十种常见的编程语言进行对比分析,帮助读者了解它们的优缺点和适用场景。 一、Python Pyt…...

React16源码: React.Children源码实现

React.Children 1 ) 概述 这个API用的也比较的少,因为大部分情况下,我们不会单独去操作children我们在一个组件内部拿到 props 的时候,我们有props.children这么一个属性大部分情况下,直接把 props.children 把它渲染到我们的jsx…...

深度学习|4.1 深L层神经网络 4.2 深层网络的正向传播

4.1 深L层神经网络 对于某些问题来说,深层神经网络相对于浅层神经网络解决该问题的效果会较好。所以问题就变成了神经网络层数的设置。 其中 n [ i ] n^{[i]} n[i]表示第i层神经节点的个数, w [ l ] w^{[l]} w[l]代表计算第l层所采用的权重系数&#xff…...

印象笔记03 衍生软件使用

印象笔记03 衍生软件使用 Verse 以下内容来源于官方介绍 VERSE是一款面向未来的智能化生产力工具,由印象笔记团队诚意推出。 你可以用VERSE: 管理数字内容,让信息有序高效运转;搭建知识体系,构建你的强大知识库&am…...

R语言【CoordinateCleaner】——cc_gbif(): 根据通过 method 参数定义的方法,删除或标记地理空间中异常值的记录。

cc_gbif()是R语言包coordinatecleaner中的一个函数,用于清理GBIF(全球生物多样性信息设施)数据集的地理坐标。该函数可以识别潜在的坐标错误,并对其进行修正或删除。 以下是cc_gbifl()函数的一般用法和主要参数: cc_…...

模式识别与机器学习-集成学习

集成学习 集成学习思想过拟合与欠拟合判断方法 K折交叉验证BootstrapBagging随机森林的特点和工作原理: BoostingAdaBoost工作原理:AdaBoost的特点和优点:AdaBoost的缺点: Gradient Boosting工作原理:Gradient Boostin…...

vue简单实现滚动条

背景:产品提了一个需求在一个详情页,一个form表单元素太多了,需要滚动到最下面才能点击提交按钮,很不方便。他的方案是,加一个滚动条,这样可以直接拉到最下面。 优化:1、支持滚动条,…...

计算机网络第一课

先了解层级: 传输的信息称为协议数据单元(PDU),PDU在每个层次的称呼都不同,见下图:...

初识大数据,一文掌握大数据必备知识文集(12)

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…...

安全防御之授权和访问控制技术

授权和访问控制技术是安全防御中的重要组成部分,主要用于管理和限制对系统资源(如数据、应用程序等)的访问。授权控制用户可访问和操作的系统资源,而访问控制技术则负责在授权的基础上,确保只有经过授权的用户才能访问…...

Iceberg从入门到精通系列之二十:Iceberg支持的字段类型

Iceberg从入门到精通系列之二十:Iceberg支持的字段类型 Iceberg 表支持以下类型: 字段类型描述注释booleanTrue or falseint32 位有符号整数可以提升到longlong64 位有符号整数float32 位 IEEE 754 浮点可以提升到doubledouble64 位 IEEE 754 浮点decim…...

Unity坦克大战开发全流程——结束场景——通关界面

结束场景——通关界面 就照着这样来拼 写代码 hideme不要忘了 修改上一节课中的代码...

K8S三种发布方式和声明式资源管理

蓝绿发布 把应用服务集群标记位两个组,蓝组和绿组,先升级蓝组,先要把蓝组从负载均衡当中移除,绿组继续提供服务,蓝组升级完毕,再把绿组从负载均衡当中移除,绿组升级,然后都加入回负载…...

从千问Agent看AI Agent——我们很强,但还有很长的路要走

前言 最近双十一做活动买了台新电脑,显卡好起来了自然也开始大模型的学习工作了,这篇文章可能是该系列的第一弹,本地私有化部署千问agent,后面还会尝试一些其他的大模型结合本地知识库或者做行业垂直模型训练的,一步…...

Word2Vector介绍

Word2Vector 2013 word2vec也叫word embeddings,中文名“词向量”,google开源的一款用于词向量计算的工具,作用就是将自然语言中的字词转为计算机可以理解的稠密向量。在word2vec出现之前,自然语言处理经常把字词转为离散的单独的…...

书生·浦语大模型全链路开源体系----(1)

书生浦语大模型全链路开源体系 什么是大语言模型? 大语言模型是指具有大规模参数和强大语言理解能力的机器学习模型。这些模型通常使用深度学习技术,特别是递归神经网络(RNN)或变换器(Transformer)等架构…...

第四篇 行为型设计模式 - 灵活定义对象间交互

第四篇:行为型设计模式 - 灵活定义对象间交互 行为型设计模式关注对象之间的交互和职责分配,旨在定义对象间的高效、灵活的通信机制。以下是十一种常见行为型设计模式的详解及其应用场景。 1. 策略模式详解及其应用场景 详解: 策略模式定义…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...