当前位置: 首页 > news >正文

线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?

  以下是关于下三角矩阵L的行列式一定等于+-1的一些说明

笔者的一些话(写在最前面):

        这是一篇小文,是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来,是因为这一段相对于原文是可以完全独立的,也是因为我自认为这是原文中很精彩的一段论证。为了便于我自己后续翻阅和查找,也是为了给我CSDN文章里面凑数,这才有了这篇文章。

证明:在LU分解中,下三角矩阵L的行列式一定是\pm 1.

在证明之前,我这里先补充几条关于行列式的性质:

性质1:对于三角矩阵而言,不论是上三角矩阵还是下三角矩阵,其行列式的值都等于主对角线上元素的乘积。

        此处引用Gilbert strang的线性代数教科书《introduction to linear algebra》中,第251页处的一段关于矩阵行列式的相应说明:

        截图中第七条性质说:如果矩阵A是一个三角矩阵,则矩阵A的行列式等于其对角线上元素的乘积。

\mathbf{\left | A \right |=a_{11}*a_{22}*...*a_{nn}}

性质2:两个矩阵A,B的积AB的行列式|AB|等于这两个矩阵各自的行列式|A|和|B|的积,即:

\mathbf{\left | AB \right |=\left | A \right |\left | B \right |}

性质3:单位矩阵I的行列式为1。

性质4:对矩阵进行行与行之间的交换后,需要改变原矩阵行列式的正负号。

        在LU分解中,下三角阵L是高斯消元的逆过程,是多个消元矩阵E的逆矩阵E^{-1}的乘积(形如下图中的矩阵)。

        首先,根据上面说的性质1可知,所有消元矩阵E的逆矩阵E^{-1}的行列式等于其对角线上所有元素的乘积。又因为矩阵E^{-1}对角线上元素都是1,所以,E^{-1}的行列式一定等于1。此外,根据性质2,L的行列式等于多个E^{-1}的行列的乘积,所以,L的行列式必然等于1,即:

\left |L \right |=\left | {E_{1}}^{-1}\right |*\left | {E_{2}}^{-1}\right |*\left | {E_{3}}^{-1}\right |*...\left | {E_{n}}^{-1}\right |

        可是,如果对矩阵A进行高斯消元的过程中,遇到对角线上的元素为0的情况,就需要对矩阵进行行交换,则上式就会包含一些置换矩阵:

\left |L \right |=\left | {P_{1}}^{-1}\right |*\left | {E_{1}}^{-1}\right |*\left | {E_{2}}^{-1}\right |*\left | {E_{3}}^{-1}\right |*\left | {E_{4}}^{-1}\right |*\left | {P_{2}}^{-1}\right |...\left | {E_{n}}^{-1}\right |

        这种情况下计算出来的L矩阵可就不一定是标准的下三角矩阵了,比如说下面这个矩阵:

        这样一来就需要对L矩阵进行行交换,把他变成标准的下三角矩阵,以确保他的det等于1。而交换的过程需要用置换矩阵P记录下来,使得原来的L,变成PL(这时的L已经是标准的下三角矩阵了)。因为置换矩阵P只不过是对单位矩阵I进行行交换后的结果,因此,综合性质3性质4可知,置换矩阵P的行列式的值只能是+1或-1。在结合前面得出的L矩阵的行列式一定是1的结论,最终PL的行列式只能是+1或-1。

        因此,当我们基于矩阵A的LU分解计算出L的det后(必然是1),如果高斯消元的过程中进行过行交换,还要再根据行交换的次数(置换矩阵P)去调整det的符号。

事实上,在matlab中自带的计算矩阵行列式的det函数就利用了这一点。

        按照Matlab的官方说明文档,首先,他在计算矩阵的det时先调了lu分解函数,对矩阵进行分解。

注意,matlab的lu分解函数有很多,只是他在计算行列式时,调用的是[L,U]=lu(A)。

        按照他官方文档的说法,分解后的L矩阵和U矩阵中,L矩阵有被置换过,也就不是标准的三角矩阵。这和我们前面提到的,如果消元时进行过行交换的情况是一致的。

        然后,对这个“经过置换的下三角矩阵L”进行行交换,并记录交换过程得到:

\left | PL \right |=\left |P \right |\left | L \right |=\pm 1*1=\pm 1

        最后一步,求出矩阵U(他一定是一个标准的上三角矩阵)中主对角线上所有元素的乘积,然后和前一步的结果相乘,得到矩阵A的行列式:


\left |A \right |=\left |PLU \right |=\left | P \right |\left | L \right |\left | U \right |=(\pm 1)*(1)*\left | U \right |=\pm\left | U \right |

 例子:


(全文完)

作者 --- 松下J27 

 参考文献(鸣谢):

1,https://en.wikipedia.org/wiki/Determinant

2,Determinant of a Matrix

3,矩阵行列式 - MATLAB det- MathWorks 中国

4,线性代数 --- LU分解(Gauss消元法的矩阵表示)_矩阵的lu分解-CSDN博客

5,线性代数 --- Gauss消元的部分主元法和完全主元法_部分选主元高斯matlab-CSDN博客

(配图与本文无关)

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

相关文章:

线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?

以下是关于下三角矩阵L的行列式一定等于-1的一些说明 笔者的一些话(写在最前面): 这是一篇小文,是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来,是因为这一段相对于原文是可以完全独立的,也是因为我…...

Redisson 源码解析 - 分布式锁实现过程

一、Redisson 分布式锁源码解析 Redisson是架设在Redis基础上的一个Java驻内存数据网格。在基于NIO的Netty框架上,充分的利用了Redis键值数据库提供的一系列优势,在Java实用工具包中常用接口的基础上,为使用者提供了一系列具有分布式特性的常…...

玩转贝启科技BQ3588C开源鸿蒙系统开发板 —— 开发板详情与规格

本文主要参考: BQ3588C_开发板详情-开源鸿蒙技术交流-Bearkey-开源社区 BQ3588C_开发板规格-开源鸿蒙技术交流-Bearkey-开源社区 厦门贝启科技有限公司-Bearkey-官网 1. 开发板详情 RK3588 核心板是一款由贝启科技自主研发的基于瑞芯微 RK3588 AI 芯片的智能核心…...

Qt pro文件

1. 项目通常结构 2.pri文件 pri文件可定义通用的宏,例如创建一个COMMON.pri文件内容为 COMMON_PATH D:\MyData 然后其它pri或者pro文件如APPTemplate.pro文件中通过添加include(Common.pri) ,QtCreator就会自动在项目结构树里面创建对应的节点 3.变量…...

实验笔记之——服务器链接

最近需要做NeRF相关的开发,需要用到GPU,本博文记录本人配置服务器远程链接的过程,本博文仅供本人学习记录用~ 连上服务器 首先先确保环境是HKU的网络环境(HKU AnyConnect也可)。伙伴已经帮忙创建好用户(第一次登录会提示重新设置密码)。用cmd ssh链接ssh -p 60001 <u…...

微服务-java spi 与 dubbo spi

Java SPI 通过一个案例来看SPI public interface DemoSPI {void echo(); } public class FirstImpl implements DemoSPI{Overridepublic void echo() {System.out.println("first echo");} } public class SecondImpl implements DemoSPI{Overridepublic void ech…...

redis复习笔记03(小滴课堂)

Redis6常见数据结构概览 0代表存在&#xff0c;1代表不存在。 1表示删除成功&#xff0c;0表示失败。 查看类型&#xff0c;默认string类型。 也可以设置set类型。 list类型。 查看key的过期时间&#xff1a; Redis6数据结构之String类型介绍和应用场景 批量设置&#xff1a; …...

【Spring Cloud】关于Nacos配置管理的详解介绍

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Spring Cloud》。&#x1f3af;&#x1f3af; &am…...

基于Java SSM框架实现校园网络维修系统项目【项目源码】

基于java的SSM框架实现校园网络维修系统演示 java简介 Java主要采用CORBA技术和安全模型&#xff0c;可以在互联网应用的数据保护。它还提供了对EJB&#xff08;Enterprise JavaBeans&#xff09;的全面支持&#xff0c;java servlet API&#xff0c;JSP&#xff08;java serve…...

项目框架构建之3:Nuget服务器的搭建

本文是“项目框架构建”系列之3&#xff0c;本文介绍一下Nuget服务器的搭建&#xff0c;这是一项简单的工作&#xff0c;您或许早已会了。 1.打开vs2022创建Asp.net Web应用程序 框架选择.net framework4.8&#xff0c;因为nuget服务器只支持.net framework。 2.选择空项目和保…...

外包干了1个月,技术退步一大半。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入广州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

167. 木棒(dfs剪枝,经典题)

167. 木棒 - AcWing题库 乔治拿来一组等长的木棒&#xff0c;将它们随机地砍断&#xff0c;使得每一节木棍的长度都不超过 50 个长度单位。 然后他又想把这些木棍恢复到为裁截前的状态&#xff0c;但忘记了初始时有多少木棒以及木棒的初始长度。 请你设计一个程序&#xff0…...

用HTML的原生语法实现两个div子元素在同一行中排列

代码如下&#xff1a; <div id"level1" style"display: flex;"><div id"level2-1" style"display: inline-block; padding: 10px; border: 1px solid #ccc; margin: 5px;">这是第一个元素。</div><div id"…...

C++进阶--map和set的介绍及使用

map和set的介绍及使用 一、关联式容器与键值对关联式容器键值对pair树形结构的关联式容器 二、set2.1 set的介绍2.2 set的使用2.2.1 set的模板参数列表2.2.2 set的构造2.2.3 set的迭代器2.2.4 set的容量2.2.5 set修改操作2.2.6 set的使用举例 三、multiset3.1 multiset的介绍3.…...

MIML-DA

图3呢&#xff1f;且作者未提供代码...

[ROS2 Foxy]#1.3 安装使用 turtlesim

官网教程: https://docs.ros.org/en/foxy/Tutorials/Turtlesim/Introducing-Turtlesim.html 1.turtlesim安装和使用 turtlesim是一个轻量级的模拟程序,用来学习ROS2 .通过turtlesim来介绍ROS2在一个基础的水平上都要做了那些事,以此让我们了解将来在真的 robot或者模拟器上使用…...

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第三天-Linux进程(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…...

1-01初识C语言

一、概述 C语言是贝尔实验室的Ken Thompson&#xff08;肯汤普逊&#xff09;、Dennis Ritchie&#xff08;丹尼斯里奇&#xff09;等人开发的UNIX 操作系统的“副产品”&#xff0c;诞生于1970年代初。 Thompson和Ritchie共同创作完成了Unix操作系统&#xff0c;他们都被称为…...

Python字符串

定义字符串 Python中要定义一个字符串&#xff0c;有比较多的一种方式。 示例代码&#xff1a; s "你好&#xff0c;张大鹏" print(s, type(s))s 你好&#xff0c;张大鹏 print(s, type(s))s """你好&#xff0c;张大鹏""" prin…...

PHP 基础编程 1

文章目录 前后端交互尝试php简介php版本php 基础语法php的变量前后端交互 - 计算器体验php数据类型php的常量和变量的区别php的运算符算数运算符自增自减比较运算符赋值运算符逻辑运算 php的控制结构ifelseelse if 前后端交互尝试 前端编程语言&#xff1a;JS &#xff08;Java…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...