【数据库原理】(16)关系数据理论的函数依赖
一.函数依赖的概念
函数依赖是关系数据库中核心的概念,它指的是在属性集之间存在的一种特定的关系。这种关系表明,一个属性集的值可以唯一确定另一个属性集的值。
- 属性子集:在关系模式中,X和Y可以是单个属性,也可以是属性的组合。
- 唯一确定:对于关系模式中的任意两个元组,如果它们在X上的值相同,则它们在Y上的值也必须相同。
定义
- 基本定义:函数依赖,记作
X -> Y
,意味着在关系模式R(U)
中,如果X
是U
的子集,那么X
的值可以唯一确定Y
的值。 - 非平凡函数依赖:如果
Y
不是X
的子集,则X -> Y
是非平凡函数依赖。 - 平凡函数依赖:如果
Y
是X
的子集,则X -> Y
是平凡函数依赖。
完全与部分函数依赖
- 完全函数依赖:如果没有
X
的任何真子集能决定Y
,则称Y
对X
完全函数依赖。 - 部分函数依赖:如果
X
的某个真子集可以决定Y
,则称Y
对X
部分函数依赖。
传递函数依赖
- 定义:如果
X -> Y
和Y -> Z
且Y
不函数依赖于X
,则称Z
对X
传递函数依赖。。
函数依赖的闭包
- 闭包:由函数依赖集
F
推导出的所有函数依赖的集合称为F
的闭包,记作 F + F^+ F+。
数据库设计中的应用
- 消除冗余和异常:理解和应用函数依赖有助于减少数据存储中的冗余,并避免更新、插入和删除异常。
- 规范化:函数依赖是数据库规范化过程的基础。通过规范化,可以将数据库分解成多个结构简单、相互独立的小表,从而提高数据库的运行效率和数据的一致性。
实例分析
以一个简单的员工数据库为例,假设有一个关系模式Employee(员工号, 姓名, 部门)
,其中:
- 如果一个员工号唯一地决定一个员工的姓名和部门,则称姓名和部门函数依赖于员工号(员工号 → 姓名, 部门)。
- 如果部门中的每个员工都有一个唯一的员工号,则员工号函数依赖于部门(部门 → 员工号),这可能表明设计上的问题,因为部门通常包含多个员工。
二.关键字(码)
关键字(码)的定义
- 基本概念:在关系数据库中,关键字(又称码)是一种特殊的属性或属性组合,能够在关系模式中唯一标识每个元组。
- 候选码:关系中所有可能作为唯一标识符的属性集称为候选码。
- 主码:从候选码中选定的一个作为主要的唯一标识符。
- 主属性:包含在任何一个候选码中的属性。
- 非主属性:不包含在任何码中的属性。
关键字的重要性
- 唯一性标识:关键字确保关系中的每个元组都是唯一的,从而使数据的检索和操作更为准确。
- 实体完整性:关键字强制执行实体完整性规则,确保数据库的准确性和可靠性。
- 构建关系:关键字是关系间联系的基础,特别是在实现外键(外部码)时,它们建立了表之间的联系。
主键与外键
- 主键(Primary Key):选定的候选码,用于唯一标识关系中的每个元组。
- 外键(Foreign Key):存在于一个关系中但作为另一个关系的主键的属性或属性组。
示例
假设有关系模式 R(城市, 街道, 邮编)
,其中 城市
和 街道
的组合能唯一确定一个邮编,这组属性可以作为候选码。如果在另一个关系模式中 邮编
是唯一标识符,则它在当前关系模式中作为外键存在。
选择合适的关键字
在数据库设计中,选择合适的关键字至关重要,因为它影响数据的整合性、存取效率和系统的可维护性。选择时应考虑以下因素:
- 最小化:候选码应该尽可能小,以减少存储空间和提高处理效率。
- 稳定性:选择不易改变的属性作为关键字。
- 简洁性:简单的属性或属性组合更易于管理和使用。
二.Armstrong 公理系统
Armstrong 公理系统为函数依赖的理论提供了一套形式化的推理规则,用于从已知的函数依赖中导出更多的函数依赖。这一系统是关系模式分解算法的理论基础,帮助数据库设计者理解和应用函数依赖的概念。
Armstrong 公理系统的规则
-
自反律 (Reflexivity):
- 如果 Y⊆X⊆U,则 X→Y 是成立的。
- 说明: 任何属性集总是函数决定其子集。
-
增广律 (Augmentation):
- 如果 X→Y 成立,且 Z⊆U,则 XZ→YZ 也成立。
- 说明: 可以在函数依赖的两边同时增加相同的属性集。
-
传递律 (Transitivity):
- 如果 X→Y 和 Y→Z 成立,则 X→Z 也成立。
- 说明: 函数依赖具有传递性。
由于关系的性质,Armstrong 公理系统是有效和完备的。它的推论包括合并规则、伪传递规则和分解规则。
推论规则
-
合并规则 (Union Rule):
- 如果 X→Y 和 X→Z 成立,则 X→YZ 也成立。
- 说明: 可以合并具有相同左部的函数依赖。
-
伪传递规则 (Pseudo Transitivity Rule):
- 如果 X→Y 和 WY→Z 成立,则 XW→Z 也成立。
- 说明: 当函数依赖的右部与另一个函数依赖的左部部分重叠时,可推导出新的函数依赖。
-
分解规则 (Decomposition Rule):
- 如果 X→Y 成立,并且 Z⊆Y,则 X→Z 也成立。
- 说明: 函数依赖的右部可以分解成更小的部分。
重要结论
- 函数依赖 X → A 1 , A 2 , . . . , A n X→A_1,A_2,...,A_n X→A1,A2,...,An 成立的充分必要条件是每个 X → A i X→A_i X→Ai 都成立。
- 函数依赖集 F 的闭包 F + F^+ F+ 是从 F 出发用公理导出的所有函数依赖的集合。
应用
Armstrong 公理系统在数据库设计中被广泛应用于确定关系模式的规范化程度。通过应用这些规则,设计者可以识别数据冗余和更新异常,并据此对数据库模式进行调整,以达到更高级别的规范化。
相关文章:
【数据库原理】(16)关系数据理论的函数依赖
一.函数依赖的概念 函数依赖是关系数据库中核心的概念,它指的是在属性集之间存在的一种特定的关系。这种关系表明,一个属性集的值可以唯一确定另一个属性集的值。 属性子集:在关系模式中,X和Y可以是单个属性,也可以是…...

脆弱的SSL加密算法漏洞原理以及修复方法
漏洞名称:弱加密算法、脆弱的加密算法、脆弱的SSL加密算法、openssl的FREAK Attack漏洞 漏洞描述:脆弱的SSL加密算法,是一种常见的漏洞,且至今仍有大量软件支持低强度的加密协议,包括部分版本的openssl。其实…...
SVN迁移至GitLab,并附带历史提交记录(二)
与《SVN迁移至GitLab,并附带历史提交记录》用的 git svn clone不同,本文使用svn2git来迁移项目代码。 一、准备工作 安装Git环境,配置本地git账户信息: git config --global user.name "XXX" git config --global us…...

如何创建容器搭建节点
1.注册Discord账号 https://discord.com/这是登录网址: https://discord.com/ 2.点击startnow注册,用discord注册或者邮箱注册都可,然后登录tickhosting Tick Hosting这是登录网址:Tick Hosting 3.创建servers 4.点击你创建的servers,按照图中步骤进行...

微众区块链观察节点的架构和原理 | 科普时间
践行区块链公共精神,实现更好的公众开放与监督!2023年12月,微众区块链观察节点正式面向公众开放接入功能。从开放日起,陆续有多个观察节点在各地运行,同步区块链数据,运行区块链浏览器观察检视数据…...

React Admin 前端脚手架之ant-design-pro
文章目录 一、React Admin 前端脚手架选型二、React Admin 前端脚手架之ant-design-pro三、ant-design-pro使用步骤四、调试主题五、常用总结(持续更新)EditableProTable组件 常用组件EditableProTable组件 编辑某行后,保存时候触发发送请求EditableProTable组件,添加记录提…...
向爬虫而生---Redis 基石篇1 <拓展str>
前言: 本来是基于scrapy-redis进行讲解的,需要拓展一下redis; 包含用法,设计,高并发,阻塞等; 要应用到爬虫开发中,这些基础理论我觉得还是有必要了解一下; 所以,新开一栏! 把redis这个环节系统补上,再转回去scrapy-redis才好深入; 正文: Redis是一种内存数据库,…...

【野火i.MX6ULL开发板】利用microUSB线烧入Debian镜像
0、前言 烧入Debian镜像有两种方式:SD卡、USB SD卡:需要SD卡(不是所有型号都可以,建议去了解了解)、SD卡读卡器 USB:需要microUSB线 由于SD卡的网上资料很多了,又因为所需硬件(SD卡…...
“我在大A炒自己”
嘻嘻嘻,大伙儿好像还挺喜欢我闲聊,今天太忙,没得空精进技术,那咱还是接着闲聊吧😂😂 看到标题点进来的各位大A真爱粉,请先收下我的崇高敬意!!别误会,标题说的…...
js 颜色转换,RGB颜色转换为16进制,16进制颜色转为RGB格式
颜色转换,RGB颜色转换为16进制,16进制颜色转为RGB格式,可以自己设置透明度。 //十六进制颜色值的正则表达式 var reg /^#([0-9a-fA-f]{3}|[0-9a-fA-f]{6})$/; /*RGB颜色转换为16进制*/ String.prototype.colorHex function () {var that this;if (/^…...

uniapp中用户登录数据的存储方法探究
Hello大家好!我是咕噜铁蛋!作为一个博主,我们经常需要在应用程序中实现用户登录功能,并且需要将用户的登录数据进行存储,以便在多次使用应用程序时能够方便地获取用户信息。铁蛋通过科技手段帮大家收集整理了些知识&am…...

引导过程与服务控制
文章目录 一、Linux操作系统引导过程1、开机启动的完整过程1.1 开机自检(BIOS)1.2 MBR引导1.3 GRUB菜单1.4 加载内核(kernel)1.5 init进程初始化 2、系统初始化进程2.1 init进程2.2 systemdinit与systemd区别 3、Systemd单元类型4…...

《矩阵分析》笔记
来源:【《矩阵分析》期末速成 主讲人:苑长(5小时冲上90)】https://www.bilibili.com/video/BV1A24y1p76q?vd_sourcec4e1c57e5b6ca4824f87e74170ffa64d 这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没…...
『App自动化测试之Appium应用篇』| Appium常用API及操作
『App自动化测试之Appium应用篇』| Appium常用API及操作 1 press_keycode1.1 键盘操作1.2 关于KeyCode1.3 press_keycode源码1.4 电话键相关1.5 控制键相关1.6 基本按键相关1.7 组合键相关1.8 符号键相关1.9 使用举例 2 swip方法2.1 swip说明2.2 swip使用方法2.3 使用示例 3 sc…...

VSCode搭建 .netcore 开发环境
一、MacOS 笔者笔记本电脑上安装的是macOS High Sierra(10.13),想要尝试一下新版本的.netcore,之前系统是10.12时,.netcore 3.1刚出来时安装过3.1版本,很久没更新了,最近.net8出来了,想试一下,…...

python 写自动点击爬取数据
今天来点不一样的!哥们 提示: 这里只是用于自己学习的 ,请勿用违法地方 效果图 会进行点击下一页 进行抓取 需要其他操作也可以自己写 文章目录 今天来点不一样的!哥们前言一、上代码?总结 前言 爬虫是指通过编程自动…...

CSDN博客重新更新
说来惭愧,好久没更新博客文章,导致个人博客网站:https://lenky.info/ 所在的网络空间和域名都过期了都没发觉,直到有个同事在Dim上问我我的个人博客为啥打不开了。。。幸好之前有做整站备份,后续慢慢把内容都迁回CSDN上…...
《剑指 Offer》专项突破版 - 面试题 5 : 单词长度的最大乘积(C++ 实现)
目录 前言 方法一 方法二 前言 题目链接:318. 最大单词长度乘积 - 力扣(LeetCode) 题目: 输入一个字符串数组 words,请计算不包含相同字符的两个字符串 words[i] 和 words[j] 的长度乘积的最大值。如果所有字符串…...

【Java集合篇】HashMap的get方法是如何实现的?
HashMap的get方法是如何实现的 ✔️典型解析✔️拓展知识仓✔️如何避免HashMap get方法的哈希重✔️HashMap get方法的优缺点有哪些✔️HashMap get方法的是线程安全的吗✔️什么是ConcurrentHashMap✔️ConcurrentHashMap有哪些应用场景✔️ConcurrentHashMap的优缺点 ✔️源…...

Java学习苦旅(二十二)——MapSet
本篇博客将详细讲解Map和Set。 文章目录 搜索概念模型 MapMap.Entry<K, V>Map的常用方法说明TreeMap和HashMap的区别 Set常用方法说明TreeSet和HashSet的区别 结尾 搜索 概念 Map和set是一种专门用来进行搜索的容器或者数据结构,其搜索的效率与其具体的实例…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...

break 语句和 continue 语句
break语句和continue语句都具有跳转作用,可以让代码不按既有的顺序执行 break break语句用于跳出代码块或循环 1 2 3 4 5 6 for (var i 0; i < 5; i) { if (i 3){ break; } console.log(i); } continue continue语句用于立即终…...