当前位置: 首页 > news >正文

Keras实现seq2seq

概述      

          Seq2Seq是一种深度学习模型,主要用于处理序列到序列的转换问题,如机器翻译、对话生成等。该模型主要由两个循环神经网络(RNN)组成,一个是编码器(Encoder),另一个是解码器(Decoder)。

seq2seq基本结构
seq2seq基本结构

        Seq2Seq被提出于2014年,最早由两篇文章独立地阐述了它主要思想,分别是Google Brain团队的《Sequence to Sequence Learning with Neural Networks》和Yoshua Bengio团队的《Learning Phrase Representation using RNN Encoder-Decoder for Statistical Machine Translation》。这两篇文章针对机器翻译的问题不谋而合地提出了相似的解决思路,Seq2Seq由此产生。

工作原理

  • 编码阶段:输入一个序列,使用RNN(Encoder)将每个输入元素转换为一个固定长度的向量,然后将这些向量连接起来形成一个上下文向量(context vector),用于表示输入序列的整体信息。
  • 转换阶段:将上下文向量传递给另一个RNN(Decoder),在每个时间步,根据当前的上下文向量和上一个输出生成一个新的输出,直到生成一个特殊的结束符号,表示序列的结束。
  • 训练阶段:根据目标序列和生成的输出之间的差异计算损失,并使用反向传播算法优化模型的参数,以减小损失。
  • 预测或生成阶段:使用训练好的模型根据输入序列生成目标序列。

示例 

# 导入所需的库
import numpy as np
from keras.models import Model
from keras.layers import Input, LSTM, Dense# 定义输入序列的长度和输出序列的长度
input_seq_length = 10
output_seq_length = 10# 定义输入序列的维度
input_dim = 28# 定义LSTM层的单元数
lstm_units = 128#定义编码器模型
#定义编码器的输入层,形状为(None, input_dim),表示可变长度的序列
encoder_inputs = Input(shape=(None, input_dim)) #定义一个LSTM层,单元数为lstm_units,返回状态信息
encoder = LSTM(lstm_units, return_state=True)#将编码器的输入传递给LSTM层,得到输出和状态信息
encoder_outputs, state_h, state_c = encoder(encoder_inputs) #将状态信息存储在列表中
encoder_states = [state_h, state_c]#定义解码器模型
#定义解码器的输入层,形状为(None, input_dim),表示可变长度的序列
decoder_inputs = Input(shape=(None, input_dim))  #定义一个LSTM层,单元数为lstm_units,返回序列信息和状态信息
decoder_lstm = LSTM(lstm_units, return_sequences=True, return_state=True)#将解码器的输入和编码器的状态传递给LSTM层,得到输出和状态信息
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)#定义一个全连接层,输出维度为input_dim,激活函数为softmax
decoder_dense = Dense(input_dim, activation='softmax')  #将LSTM层的输出传递给全连接层,得到最终的输出
decoder_outputs = decoder_dense(decoder_outputs)# 定义seq2seq模型,输入为编码器和解码器的输入,输出为解码器的输出
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)# 编译模型,使用RMSProp优化器和分类交叉熵损失函数进行编译
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')# 打印模型结构
model.summary()

模型结构 

Model: "model"
__________________________________________________________________________________________________Layer (type)                Output Shape                 Param #   Connected to                  
==================================================================================================input_1 (InputLayer)        [(None, None, 28)]           0         []                            input_2 (InputLayer)        [(None, None, 28)]           0         []                            lstm (LSTM)                 [(None, 128),                80384     ['input_1[0][0]']             (None, 128),                                                        (None, 128)]                                                        lstm_1 (LSTM)               [(None, None, 128),          80384     ['input_2[0][0]',             (None, 128),                           'lstm[0][1]',                (None, 128)]                           'lstm[0][2]']                dense (Dense)               (None, None, 28)             3612      ['lstm_1[0][0]']              ==================================================================================================
Total params: 164380 (642.11 KB)
Trainable params: 164380 (642.11 KB)
Non-trainable params: 0 (0.00 Byte)

         

      在以上示例代码中首先导入了所需的库和模块,包括Keras中的Model、Input、LSTM和Dense。然后定义了输入维度,包括词汇表大小和序列最大长度。接下来分别定义了编码器和解码器模型。编码器模型使用LSTM层作为主要结构,输出维度为128;解码器模型同样使用LSTM层作为主要结构,输出维度为词汇表大小,并使用softmax激活函数。最后,通过将编码器和解码器模型组合起来构建了Seq2Seq模型。在构建完Seq2Seq模型后,使用compile方法对模型进行编译,设置了损失函数为分类交叉熵,优化器为Adam,评估指标为准确率。最后一行代码是训练示例,实际使用时需要根据具体的训练数据和训练过程进行设置。

相关文章:

Keras实现seq2seq

概述 Seq2Seq是一种深度学习模型,主要用于处理序列到序列的转换问题,如机器翻译、对话生成等。该模型主要由两个循环神经网络(RNN)组成,一个是编码器(Encoder),另一个是解码器…...

1080p 1k 2k 4k 8k 分辨率,2K就不应该存在。

众所周知 1K(1080P):分辨率为19201080像素,2K:分辨率为25601440像素4K:分辨率为38402160像素8K:分辨率为76804320像素 边长比例,和像素比例如下: 2K宽高都是1k的1.333…...

接口芯片选型分析 四通道差分驱动可满足ANSI TIA/EIA-422-B 和ITU V.11 的要求 低功耗,高速率,高ESD

四通道差分驱动可满足ANSI TIA/EIA-422-B 和ITU V.11 的要求 低功耗,高速率,高ESD。 其中GC26L31S可替代AM26LS31/TI,GC26L32S替代AM26LS32/TI,GC26E31S替代TI的AM26LV31E...

使用.Net nanoFramework获取ESP32板载按键的点击事件

本文以 ESP32-S3-Zero 板载的按键为例,介绍了GPIO的使用方法,以及如何获取按键的点击事件。板载按钮作为自带的天然用户按钮,除了其本身的功能外,也可以作为某些应用场景下的简单的交互方式。 1. 引言 对于一般的产品来说&#x…...

安全远控如何设置?揭秘ToDesk、TeamViewer 、向日葵安全远程防御大招

写在前面一、远程控制:安全性不可忽略二、远控软件安全设置实测 ◉ ToDesk◉ TeamViewer◉ 向日葵 三、远控安全的亮点功能四、个人总结与建议 写在前面 说到远程办公,相信大家都不陌生。远程工作是员工在家中或者其他非办公场所上班的一种工作模式&am…...

Spring AOP(详解)

目录 1.AOP概述 2.AOP相关术语 3.Spring AOP的原理机制 3.1JDK动态代理 3.2 CGLIB动态代理 3.3简单代码展示 3.3.1JDK动态代理 3.3.2CGLIB动态代理 4.Spring的AOP配置 4.1pom.xml 4.2增强方法 4.3切点 4.4切面 5.基于注解的AOP配置 5.1.创建工程 5.2.增强 5.3AOP…...

Linux系统编程之进程

目录 1、进程关键概念 1.什么是程序,什么是进程,有什么区别 2.如何查看系统中有那些进程 3.什么是进程标识符 4.什么叫父进程,什么叫子进程 5.C语言的存储空间是如何分配的 2、进程创建 1.fork函数创建进程 2.vfork函数创建进程 3、…...

Vue中使用require.context自动引入组件的方法介绍

我们项目开发中,经常需要import或者export各种模块,那么有没有什么办法可以简化这种引入或者导出操作呢?答案是肯定的,下面就为大家介绍一下require.context require.context 是 webpack 提供的一个 API,用于创建 con…...

Java 监控诊断利器 Arthas monitor/watch/trace 命令使用详解

目录 一、命令介绍二、测试Demo三、命令使用示例3.1、monitor 命令3.1.1、监控primeFactors方法调用情况(5秒一个周期,每过5秒将这5秒统计的信息输出)3.1.2、监控primeFactors方法调用情况(5秒一个周期,每过5秒将这5秒…...

论文阅读:基于MCMC的能量模型最大似然学习剖析

On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models 相关代码:点击 本文只介绍关于MCMC训练的部分,由此可知,MCMC常常被用于训练EBM。最后一张图源于Implicit Generation and Modeling with Energy-Based Mod…...

【Verilog】期末复习——设计一个带异步复位端且高电平有效的32分频电路

系列文章 数值(整数,实数,字符串)与数据类型(wire、reg、mem、parameter) 运算符 数据流建模 行为级建模 结构化建模 组合电路的设计和时序电路的设计 有限状态机的定义和分类 期末复习——数字逻辑电路分…...

基于springboot的java读取文档内容(超简单)

读取一个word文档里面的内容,并取出来。 代码: SneakyThrowsGetMapping(value "/readWordDoc")ApiOperationSupport(order 1)ApiOperation(value "文档读取 ", notes "文档读取 ")public R ReadWordDoc () {System.o…...

K8S亲和性,反亲和性,及污点

nodeName:硬匹配,不走调度策略 nodeSelector:根据节点的标签选择,会走调度的算法 只要是走调度算法,在不满足预算策略的情况下,所有pod都是pending node节点的亲和性: 硬策略:必…...

2024年,AI、Web3、区块链、元宇宙:有没有“相互成就“的可能性?

加密圈最近有点冷清,曾经是科技界的宠儿,去年中旬开始一直在被SEC的诉讼困扰着,而且正处冷清的熊市,被迫居于 AI 后面的次要地位。 曾在 Web3 领域活跃并具有影响力的企业家 Jeremiah Owyang 住在旧金山,目前也深入研…...

Mac电脑好用的修图软件:Affinity Photo 2中文 for Mac

Affinity Photo 2提供了广泛的图像编辑和调整工具,使用户能够对照片进行精确的编辑和改进。它支持图像裁剪、旋转、缩放、变形等操作,以及曝光、色彩、对比度、饱和度等调整。 非破坏性编辑:软件采用非破坏性编辑方式,即对原始图…...

数据结构之Radix和Trie

数据结构可视化演示链接,也就是视频中的网址 Radix树:压缩后的Trie树 Radix叫做基数树(压缩树),就是有相同前缀的字符串,其前缀可以作为一个公共的父节点。同时在具体存储上,Radix树的处理是以…...

ctrl+c与kill -2的区别

单进程场景 在单进程的情况下,ctrlc和kill -2是一模一样的,都是向指定的进程发送SIGINT信号. 如果进程中注册了捕捉SIGINT信号的处理函数,那么这个信号会被进程处理,例如: void processB() {// Set signal handler …...

每日算法打卡:分巧克力 day 9

文章目录 原题链接题目描述输入格式输出格式数据范围输入样例:输出样例: 题目分析示例代码 原题链接 1227. 分巧克力 题目难度:简单 题目来源:第八届蓝桥杯省赛C A/B组,第八届蓝桥杯省赛Java A/B/C组 题目描述 儿童节那天有 …...

Golang switch 语句

简介 switch 语句提供了一种简洁的方式来执行多路分支选择 基本使用 基本语法如下: switch expression { case value1:// 当 expression 的值等于 value1 时执行 case value2:// 当 expression 的值等于 value2 switch 的每个分支自动提供了隐式的 break&#x…...

可碧教你C++——位图

本章节是哈希的延申 可碧教你C——哈希http://t.csdnimg.cn/3R8TU 一文详解C——哈希 位图 位图是基于哈希表的原理产生的一种新的container——bitset 基于哈希映射的原理,我们在查找的时候,可以直接去定址到元素的具体位置,然后直接访问该…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

基于Springboot+Vue的办公管理系统

角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

LangFlow技术架构分析

🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 ​二、实现思路 总体思路: 用户通过Gradio界面上…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...