深入理解Java源码:提升技术功底,深度掌握技术框架,快速定位线上问题
为什么要看源码:
1、提升技术功底: 学习源码里的优秀设计思想,比如一些疑难问题的解决思路,还有一些优秀的设计模式,整体提升自己的技术功底
2、深度掌握技术框架: 源码看多了,对于一个新技术或框架的掌握速度会有大幅提升,看下框架demo 大致就能知道底层的实现,技术框 架更新再快也不怕
3、快速定位线上问题: 遇到线上问题,特别是框架源码里的问题(比如bug), 能够快速定位,这就是相比其他没看过源码的人的优势 4、对面试大有裨益: 面试一线互联网公司对于框架技术一般都会问到源码级别的实现
5、知其然知其所以然: 对技术有追求的人必做之事,使用了一个好的框架,很想知道底层是如何实现的
6、拥抱开源社区: 参与到开源项目的研发,结识更多大牛,积累更多优质人脉
看源码方法:
1、先使用: 先看官方文档快速掌握框架的基本使用
2、抓主线:找一个demo 入手,顺藤摸瓜快速静态看一遍框架的主线源码(抓大放小),画出源码主流程图,切勿一开始就陷入源码的细枝 末节,否则会把自己绕晕
3、画图做笔记: 总结框架的一些核心功能点,从这些功能点入手深入到源码的细节,边看源码边画源码走向图,并对关键源码的理解做 笔记,把源码里的闪光点都记录下来,后续借鉴到工作项目中,理解能力强的可以直接看静态源码,也可以边看源码边debug 源码执行过 程,观察一些关键变量的值
4、整合总结:所有功能点的源码都分析完后,回到主流程图再梳理一遍,争取把自己画的所有图都在脑袋里做一个整合
Netty 高并发高性能架构设计精髓
· 主从Reactor线程模型
· NIO 多路复用非阻塞
· 无锁串行化设计思想
· 支持高性能序列化协议
● 零拷贝(直接内存的使用) · ByteBuf内存池设计
· 灵活的TCP 参数配置能力 · 并发优化
无锁串行化设计思想
在大多数场景下,并行多线程处理可以提升系统的并发性能。但是,如果对于共享资源的并发访问处理不当,会带来严重的锁竞争,这最 终会导致性能的下降。为了尽可能的避免锁竞争带来的性能损耗,可以通过串行化设计,即消息的处理尽可能在同一个线程内完成,期间 不进行线程切换,这样就避免了多线程竞争和同步锁。NIO 的多路复用就是一种无锁串行化的设计思想(理解下Redis和Netty的线程模型) 为了尽可能提升性能, Netty采用了串行无锁化设计,在IO线程内部进行串行操作,避免多线程竞争导致的性能下降。表面上看,串行化 设计似乎CPU 利用率不高,并发程度不够。但是,通过调整NIO 线程池的线程参数,可以同时启动多个串行化的线程并行运行,这种局部无锁化的串行线程设计相比一个队列-多个工作线程模型性能更优。
Netty的NioEventLoop 读取到消息之后,直接调用ChannelPipeline的fireChannelRead (Object msg),只要用户不主动切换线程, 一直 会由NioEventLoop调用到用户的Handler, 期间不进行线程切换,这种串行化处理方式避免了多线程操作导致的锁的竞争,从性能角度 看是最优的。
直接内存
直接内存 (Direct Memory) 并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域,某些情况下这部分内存也 会被频繁地使用,而且也可能导致OutOfMemoryError 异常出现。Java里用DirectByteBuffer可以分配一块直接内存(堆外内存),元空间 对应的内存也叫作直接内存,它们对应的都是机器的物理内存。
直接内存分配源码分析:
public static ByteBuffer allocateDirect(int capacity) {return new DirectByteBuffer(capacity);
}DirectByteBuffer(int cap) { super(-1, 0, cap, cap);boolean pa = VM.isDirectMemoryPageAligned();int ps = Bits.pageSize();long size = Math.max(1L, (long)cap + (pa ? ps : 0));Bits.reserveMemory(size, cap);long base = 0;try {base = unsafe.allocateMemory(size);} catch (OutOfMemoryError x) {Bits.unreserveMemory(size, cap);throw x;}unsafe.setMemory(base, size, (byte) 0);if (pa && (base % ps != 0)) {address = base + ps - (base & (ps - 1));} else {address = base;}cleaner = Cleaner.create(this, new Deallocator(base, size, cap));att = null;
}public native long allocateMemory(long bytes);UNSAFE_ENTRY(jlong,Unsafe_AllocateMemory(JNIEnv *env,jobject unsafe,jlong size)) {Unsafewrapper("Unsafe_AllocateMemory");size_t sz = (size_t)size;if(sz != (julong)size || size < 0){THROW_0(vmSymbols::java_lang_IllegalArgumentException());}sz = round_to(sz,HeapWordSize);void *x = os::malloc(sz,mtInternal);if(x == NULL){THROW_0(vmSymbols::java_lang_OutofMemoryError());}return addr to java(x);
}
使用直接内存的优缺点:
优点:
· 不占用堆内存空间,减少了发生GC的可能
· java 虚拟机实现上,本地IO 会直接操作直接内存(直接内存=>系统调用=>硬盘/网卡),而非直接内存则需要二次拷贝(堆内 存=>直接内存=>系统调用=>硬盘/网卡)
缺点:
● 初始分配较慢
· 没有JVM直接帮助管理内存,容易发生内存溢出。为了避免一直没有FULLGC, 最终导致直接内存把物理内存耗完。我们可以 指定直接内存的最大值,通过-XX:MaxDirectMemorySize 来指定,当达到阈值的时候,调用system.gc来进行一次FULL GC,间 接把那些没有被使用的直接内存回收掉。
ByteBuf内存池设计
随着JVM虚拟机和JIT即时编译技术的发展,对象的分配和回收是个非常轻量级的工作。但是对于缓冲区Buffer(相当于一个内存块),情况 却稍有不同,特别是对于堆外直接内存的分配和回收,是一件耗时的操作。为了尽量重用缓冲区,Netty提供了基于ByteBuf内存池的缓冲 区重用机制。需要的时候直接从池子里获取ByteBuf使用即可,使用完毕之后就重新放回到池子里去。下面我们一起看下Netty ByteBuf的实现:
可以看下netty的读写源码里面用到的ByteBuf内存池,比如read源码NioByteUnsafe.read();
继续看newDirectBuffer方法,我们发现它是一个抽象方法,由AbstractByteBufAllocator的子类负责具体实现,代码如下:
代码跳转到PooledByteBufAllocator的newDirectBuffer方法,从Cache中获取内存区域PoolArena,调用它的allocate方法进行内存分配:
PoolArena的allocate方法如下:
灵活的TCP参数配置能力
合理设置TCP参数在某些场景下对于性能的提升可以起到显著的效果,例如接收缓冲区SO_RCVBUF和发送缓冲区SO_SNDBUF。如果设置不当,对性能的影响是非常大的。通常建议值为128K或者256K。
Netty在启动辅助类ChannelOption中可以灵活的配置TCP参数,满足不同的用户场景。
并发优化
volatile的大量、正确使用;
CAS和原子类的广泛使用;
线程安全容器的使用;
通过读写锁提升并发性能。
ByteBuf扩容机制
如果我们需要了解ByteBuf的扩容,我们需要先了解ByteBuf中定义的几个成员变量,再从源码的角度来分析扩容。
总结:Netty的ByteBuf需要动态扩容来满足需要,扩容过程: 默认门限阈值为4MB(这个阈值是一个经验值,不同场景,可能取 值不同),当需要的容量等于门限阈值,使用阈值作为新的缓存区容量 目标容量,如果大于阈值,采用每次步进4MB的方式进行 内存扩张((需要扩容/4MB)*4MB),扩张后需要和最大内存(maxCapacity)进行比较,大于maxCapacity的话就用 maxCapacity,否则使用扩容值 目标容量,如果小于阈值,采用倍增的方式,以64(字节)作为基本数值,每次翻倍增长64 -->128 --> 256,直到倍增后的结果大于或等于需要的容量值。
补充:handler的生命周期回调接口调用顺序
/*** 在channel的pipeline里如下handler:ch.pipeline().addLast(new LifeCycleInBoundHandler());* handler 的生命周期回调接口调用顺序:* handlerAdded -> channelRegistered -> channelActive -> channelRead -> channelReadComplete -> channelInactive -> channelUnregistered -> handlerRemoved** handlerAdded: 新建立的连接会按照初始化策略,把handler添加到该channel的pipeline里面,也就是channel.pipeline.addLast(new LifeCycleInBoundHandler)执行完成后的回调;* channelRegistered: 当该连接分配到具体的worker线程后,该回调会被调用。* channelActive: channel的准备工作已经完成,所有的pipeline添加完成,并分配到具体的线上上,说明该channel准备就绪,可以使用了。* channelRead: 客户端向服务端发来数据,每次都会回调此方法,表示有数据可读;* channelReadComplete: 服务端每次读完一次完整的数据之后,回调该方法,表示数据读取完毕;* channelInactive: 当连接断开时,该回调会被调用,说明这时候底层的TCP连接已经被断开了。* channelUnRegistered: 对应channelRegistered, 当连接关闭后,释放绑定的worker线程;* handlerRemoved: 对应handlerAdded, 将handler从该channel的pipeline移除后的回调方法。*/
public class LifecycleInBoundHandler extends ChannelInboundHandlerAdapter {@Overridepublic void channelRegistered(ChannelHandlerContext ctx) throws Exception {System.out.println("channelRegistered: channel注册到NioEventLoop");super.channelRegistered(ctx);}@Overridepublic void channelUnregistered(ChannelHandlerContext ctx) throws Exception {System.out.println("channelUnregistered: channel取消和NioEventLoop的绑定");super.channelUnregistered(ctx);}@Overridepublic void channelActive(ChannelHandlerContext ctx) throws Exception {System.out.println("channelActive: channel准备就绪");super.channelActive(ctx);}@Overridepublic void channelInactive(ChannelHandlerContext ctx) throws Exception {System.out.println("channelInactive: channel被关闭");super.channelInactive(ctx);}@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {System.out.println("channelRead: channel中有可读的数据");super.channelRead(ctx, msg);}@Overridepublic void channelReadComplete(ChannelHandlerContext ctx) throws Exception {System.out.println("channelReadComplete: channel读数据完成");super.channelReadComplete(ctx);}@Overridepublic void handlerAdded(ChannelHandlerContext ctx) throws Exception {System.out.println("handlerAdded: handler被添加到channel的pipeline");super.handlerAdded(ctx);}@Overridepublic void handlerRemoved(ChannelHandlerContext ctx) throws Exception {System.out.println("handlerRemoved: handler从channel的pipeline中移除");super.handlerRemoved(ctx);}
}
相关文章:

深入理解Java源码:提升技术功底,深度掌握技术框架,快速定位线上问题
为什么要看源码: 1、提升技术功底: 学习源码里的优秀设计思想,比如一些疑难问题的解决思路,还有一些优秀的设计模式,整体提升自己的技术功底 2、深度掌握技术框架: 源码看多了,对于一个新技术…...

寒假前端第一次作业
1、用户注册: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>用户注册</title> …...

【LabVIEW FPGA入门】创建第一个LabVIEW FPGA程序
本教程仅以compactRIO(FPGA-RT)举例 1.系统配置 1.1软件安装 FPGA-RT 1. LabVIEW Development System (Full or Professional) 2. LabVIEW Real-Time Module 3. LabVIEW FPGA Module 4. NI-RIO drivers 1.2硬件配置 1.使用线缆连接CompactRIO至主机…...

【STM32】STM32学习笔记-USART串口数据包(28)
00. 目录 文章目录 00. 目录01. 串口简介02. HEX数据包03. 文本数据包04. HEX数据包接收05. 文本数据包接收06. 预留07. 附录 01. 串口简介 串口通讯(Serial Communication)是一种设备间非常常用的串行通讯方式,因为它简单便捷,因此大部分电子设备都支持…...

Java网络爬虫--HttpClient
目录标题 技术介绍有什么优点?怎么在项目中引入? 请求URLEntityUtils 类GET请求带参数的GET请求POST请求 总结 技术介绍 HttpClient 是 Apache Jakarta Common 下的子项目,用来提供高效的、功能丰富的、支持 HTTP 协议的客户端编程工具包。相…...

若依项目的table列表中对每一个字段增加排序按钮(单体版和前后端分离版)
一、目标:每一个字段都添加上下箭头用来排序 只需要更改前端代码,不需要更改后端代码,后面会讲解原理 二、单体版实现方式: 1.在options中添加sortable:true 2.在需要排序的字段中添加sortable:true 三、前后端分离版 1.el-table上添加@sort-change=“handleSortChange”…...
Linux自动化部署脚本
1:最近项目部署比较频繁终于熬不住了 就有下面的这东西 #!/bin/sh #报错停止运行 set -e # 获取tomcat的PID TOMCAT_PID$(ps -ef | grep tomcat | grep -v grep | awk {print $2}) # tomcat的启动文件位置 START_TOMCAT/mnt/tomcat/bin/startup.sh # 项目文件部署位置 PROJECT…...
lvgl修改图片大小上限
在lvgl中读取图片文件时,被读取的图片具有上限,也就是2048像素。这会造成两个非预期的结果: 超过2048像素的部分会被裁去。表示图片的结构体lv_img_t中的w和h变量值是图片像素被2048求余。例如,当一个图片高为2048像素时…...

阻止持久性攻击改善网络安全
MITRE ATT&CK框架是一个全球可访问的精选知识数据库,其中包含基于真实世界观察的已知网络攻击技术和策略。持久性是攻击者用来访问系统的众多网络攻击技术之一;在获得初始访问权限后,他们继续在很长一段时间内保持立足点,以窃取数据、修改…...
MFC与Qt多个控件响应统一响应消息处理
就目前使用C开发框架来说,今天来讲述下MFC框架下与Qt框架下,如何让多个控件响应统一消息处理方法。 功能:假设有5个按钮,需要响应同一个处理函数,该如何实现呢? Qt方式 开发环境:win10 VS201…...
Camunda rest api鉴权
对于rest api 不能没有限制的任何人随意调用,需要提供账号信息。 一:工作流引擎增加过滤器 /*** 对/engine-rest/*进行鉴权,防止非法攻击* 客户端调用需要配置用户凭证否则报错401* camunda.bpm.client.basic-auth.username* camunda.bpm.cl…...

【PostgreSQL】在DBeaver中实现序列、函数、视图、触发器设计
【PostgreSQL】在DBeaver中实现序列、函数、触发器、视图设计 基本配置一、序列1.1、序列使用1.1.1、设置字段为主键,数据类型默认整型1.1.2、自定义序列,数据类型自定义 1.2、序列延申1.2.1、理论1.2.2、测试1.2.3、小结 二、函数2.1、SQL直接创建2.1.1…...

PyQt5-小总结
之前学习PyQt5,然后那段时间想做一个桌面小程序,后来由于学习内容较多就做了一小部分,但是可以进行页面跳转。大家如果是初学者对Python感兴趣而且刚学数据库时可以看看代码,可能会有点启发。 效果: 登录进来是这&…...
vue父组件给子组件传值,子组件不渲染的原因及解决方法
父组件传递给子组件的数据,如果是一个复杂对象(例如一个数组或对象),那么子组件只会监听对象的引用而不是对象的内容。这意味着当对象的内容发生变化时,子组件不会更新。 解决: 1、在子组件使用 watch 监听…...

【数据库】MySQL锁
一、锁的基本概念 1、锁的定义 锁是协调多个进程或线程并发访问数据库资源的一种机制。 MySQL中的锁是在服务器层或者存储引擎层实现的,保证了数据访问的一致性与有效性。但加锁是消耗资源的,锁的各种操作,包括获得锁、检测锁是否已解除、…...

mongodb学习篇
目录 前言基本概念数据库-database集合-collection文档-document 部署mongodblinux安装mongodbdocker安装mongodb MongoDB Shell (mongosh)命令行工具mongodb可视化-mongodb-compass、mongo-expressmongodb配置文件mongodb库、集合、文档库基本操作集合基本操作文档的增删改查C…...

kubernetes存储类迁移-备份恢复
背景介绍 kubernetes集群最开始使用了nfs作为存储,随着后续使用过程中数据量逐渐增加,nfs存储性能逐步出现不足,现增加了基于csi的分布式块存储后,需要对原有基于nfs存储类下的pv迁移到新的存储类下。 测试环境 k8s集群版本&am…...
python智能手机芯片
在未来,python智能手机芯片的发展方向可能包括以下几个方面: 强化处理能力:随着智能手机功能的不断扩展和用户需求的增加,处理器的性能需求也在不断提升。未来的python智能手机芯片可能会加强处理器的核心数量和频率,以…...

混淆技术概论
混淆技术概论 引言 在逆向工程领域,混淆技术是一种非常重要的技术手段,通过打破人们的思维惯性,使得逆向分析变得更加困难。本文将会介绍混淆技术的概念、分类及其应用,以及如何使用IPA Guard进行iOS IPA重签名。 混淆技术概述…...

pytest安装失败,报错Could not find a version that satisfies the requirement pytest
问题 安装pytest失败,尝试使用的命令有 pip install pytest pip3 install pytest pip install -U pytest pip install pytest -i https://pypi.tuna.tsinghua.edu.cn/simple但是都会报同样的错: 解决方案 发现可能是挂了梯子的原因,关掉…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...

Matlab实现任意伪彩色图像可视化显示
Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中,如何展示好看的实验结果图像非常重要!!! 1、灰度原始图像 灰度图像每个像素点只有一个数值,代表该点的亮度(或…...

CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...

Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...