当前位置: 首页 > news >正文

图像分类任务的可视化脚本,生成类别json字典文件

1. 前言

之前的图像分类任务可视化,都是在train脚本里, 用torch中dataloader将图片和类别加载,然后利用matplotlib库进行可视化。

如这篇文章中:CNN 卷积神经网络对染色血液细胞分类(blood-cells)

在分类任务中,必定经历过图像预处理,缩放啊、随即裁剪啊之类的,可视化效果不太明显

本章将从数据角度出发,直接根据数据目录将图像可视化,随机展示所有图片的四张图片,可视化后并且保存

目标检测的可视化可以参考:

关于目标检测任务中,YOLO(txt格式)标注文件的可视化 

关于目标检测任务中,XML(voc格式)标注文件的可视化

2. 根据目录可视化 (无需类别的json文件)

目录如下:代码应该data同一路径

2.1 代码介绍

root 传入的是文件夹路径,也就是多个类别文件夹的上一级目录

将所有图像保存,为了知道图片的类别,需要把图片的父目录保存。为了方便,这里生成一个列表文件,key 是目录类别,value 是相应的图像路径

展示的代码很简单,生成随机数,将列表的文件提取出来,然后展示四张就行了

2.2 可视化结果

可视化结果

代码会在当前目录生成刚刚可视化展示的图片

2.3 完整代码

如下:

import os
import matplotlib.pyplot as plt
import random
from PIL import Imagedef main(path):classes = [i for i in os.listdir(path)]         # ['cat', 'dog']# 将所有图片按照 类别:路径 字典形式保存images_path = []  # [{'cat': './data/train\\cat\\Baidu_0000.jpeg'}, {'cat': './data/train\\cat\\Baidu_0002.jpeg'}]for cla in classes:for i in os.listdir(os.path.join(path,cla)):dic = {}  # 类别:图像路径img_path = os.path.join(path,cla,i)dic[cla] = img_path             # {'cat': './data/train\\cat\\Baidu_0000.jpeg'}images_path.append(dic)# 随机展示4张图像plt.figure(figsize=(12,8))for i in range(4):r = random.randint(0,len(images_path)-1)      # 生成随机数label,im_path= list(images_path[r].keys())[0],list(images_path[r].values())[0]#  cat , ./data/train\cat\Baidu_0049.jpegim = Image.open(im_path)plt.subplot(2,2,i+1)plt.title(label)plt.imshow(im)plt.savefig('show.png')     # 保存图片plt.show()if __name__ == '__main__':root = './data/train'       # 传入目录main(path=root)

3.生成类别json字典文件

图像分类任务,有的没有提供类别的字典文件,这里也记录一下如何生成json文件

可以通过下面代码生成

import os
import jsondef main(path):classes = [i for i in os.listdir(path)]  # ['cat', 'dog']labels = {}         # 类别的字典文件for index,name in enumerate(classes):labels[index] = namelabels = json.dumps(labels,indent=4)with open('./class_indices.json','w') as f:         # 保存成json文件f.write(labels)if __name__ == '__main__':root = './data/train'  # 传入目录main(path=root)

结果如下:


或者直接新建json文件,然后对照目录按照上面的方式输入也行

相关文章:

图像分类任务的可视化脚本,生成类别json字典文件

1. 前言 之前的图像分类任务可视化,都是在train脚本里, 用torch中dataloader将图片和类别加载,然后利用matplotlib库进行可视化。 如这篇文章中:CNN 卷积神经网络对染色血液细胞分类(blood-cells) 在分类任务中,必定…...

Adding Conditional Control to Text-to-Image Diffusion Models——【代码复现】

官方实现代码地址:lllyasviel/ControlNet: Let us control diffusion models! (github.com) 一、前言 此项目的使用需要显存大于8G,训练自己的ControlNet或需要更大,因此请注意查看自身硬件是否符合。 在此之前请确保已经安装好python以及…...

java-Exchanger详解

1.概述 java.util.concurrent.Exchanger。这在Java中作为两个线程之间交换对象的公共点。 2.Exchanger简介 Exchanger类可用于在两个类型为T的线程之间共享对象。该类仅提供了一个重载的方法exchange(T t)。 当调用exchanger时,它会等待成对的另一个线程也调用它…...

‘再战千问:启程你的提升之旅‘,如何更好地提问?

例如,很多时候我们提出一些问题,然而通义千问提供的答案,并非完全符合我们的期望。这并非由于通义千问的智能程度不足,而是提问者的“提问技巧”尚未掌握得当。 难道提问还需要讲究艺术性吗?确实如此。今天&#xff0c…...

java SSM社区文化服务管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM社区文化服务管理系统是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的 源代码和数据库,系统主…...

go执行静态二进制文件和执行动态库文件

目的和需求:部分go的核心文件不开源,例如验证,主程序核心逻辑等等 第一个想法,把子程序代码打包成静态文件,然后主程序执行 子程序 package mainimport ("fmt""github.com/gogf/gf/v2/os/gfile"…...

通过示例解释序列化和反序列化-Java

序列化和反序列化是Java(以及通常的编程)中涉及将对象转换为字节流,以及反之的过程。当你需要传输或存储对象的状态时特别有用,比如将其通过网络发送或持久化到文件中。 序列化: 定义:序列化是将对象的状…...

k8s源码阅读环境配置

源码阅读环境配置 k8s代码的阅读可以让我们更加深刻的理解k8s各组件的工作原理,同时提升我们Go编程能力。 IDE使用Goland,代码阅读环境需要进行如下配置: 从github上下载代码:https://github.com/kubernetes/kubernetes在GOPATH目…...

Java JDBC整合(概述,搭建,PreparedStatement和Statement,结果集处理)

一、JDBC的概述: JDBC:是一种执行sql语句的Java APL,可以为多种关系类型数据库提供统一访问,它由一组用Java语言编写的类和接口组成。有了JDBC,Java人员只需要编写一次程序就可以访问不同的数据库。 JDBC APL&#xf…...

Nginx 负载均衡集群 节点健康检查

前言 正常情况下,nginx 做反向代理负载均衡的话,如果后端节点服务器宕掉的话,nginx 默认是不能把这台服务器踢出 upstream 负载集群的,所以还会有请求转发到后端的这台服务器上面,这样势必造成网站访问故障 注&#x…...

uniapp 多轴图,双轴图,指定哪几个数据在哪个轴上显示

这里使用的在这里导入&#xff0c; 秋云 ucharts echarts 高性能跨全端图表组件 - DCloud 插件市场 这里我封装成一个组件&#xff0c;自适应的&#xff0c;可以直接复制到自己的项目中 <template><qiun-data-charts type"mix":opts"opts":cha…...

Kotlin 协程 supervisorScope {} 运行崩溃解决

前言 简单介绍supervisorScope函数&#xff0c;它用于创建一个使用了 SupervisorJob 的 coroutineScope&#xff0c; 该作用域的特点&#xff1a;抛出的异常&#xff0c;不会 连锁取消 同级协程和父协程。 看过很多 supervisorScope {} 文档的使用&#xff0c;我照抄一摸一样…...

【Spring 篇】JdbcTemplate:轻松驾驭数据库的魔法工具

欢迎来到数据库的奇妙世界&#xff0c;在这里&#xff0c;我们将一同揭开Spring框架中JdbcTemplate的神秘面纱。JdbcTemplate是Spring提供的一个简化数据库操作的工具&#xff0c;它为我们提供了一种轻松驾驭数据库的魔法。本篇博客将详细解释JdbcTemplate的基本使用&#xff0…...

Web开发SpringBoot SpringMVC Spring的学习笔记(包含开发常用工具类)

开发框架学习笔记 一.Spring SpringMVC SpringBoot三者的联系SpringMVC工作原理 二.SpringBoot的学习2.1 注解2.1.1 SpringBoot的核心注解2.1.2 配置导入注解(简化Spring配置写XML的痛苦)Configuration和Bean(人为注册Spring 的 Bean)Import(补)ImportResource(补)AutowiredQua…...

微服务下的SpringSecurity认证端

从三板斧开始微服务下的SpringSecurity开始 一、引入组件包 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-oauth2</artifactId> </dependency> 二、创建适配器 AuthorizationServerConfig…...

苹果电脑菜单栏应用管理软件Bartender 4 mac软件特点

Bartender mac是一款可以帮助用户更好地管理和组织菜单栏图标的 macOS 软件。它允许用户隐藏和重新排列菜单栏图标&#xff0c;从而减少混乱和杂乱。 Bartender mac软件特点 菜单栏图标隐藏&#xff1a;Bartender 允许用户隐藏菜单栏图标&#xff0c;只在需要时显示。这样可以…...

笙默考试管理系统-MyExamTest----codemirror(65)

笙默考试管理系统-MyExamTest----codemirror&#xff08;65&#xff09; 目录 一、 笙默考试管理系统-MyExamTest----codemirror 二、 笙默考试管理系统-MyExamTest----codemirror 三、 笙默考试管理系统-MyExamTest----codemirror 四、 笙默考试管理系统-MyExamTest---…...

git在本地创建dev分支并和远程的dev分支关联起来

文章目录 git在本地创建dev分支并和远程的dev分支关联起来1. 使用git命令2. 使用idea2.1 先删除上面建的本地分支dev2.2 通过idea建dev分支并和远程dev分支关联 3. 查看本地分支和远程分支的关系 git在本地创建dev分支并和远程的dev分支关联起来 1. 使用git命令 git checkout…...

【C++】深入了解构造函数之初始化列表

目录 一、再谈构造函数 1、引入 1&#xff09;构造函数体赋值 2&#xff09;不同成员变量赋值 2、初始化列表 一、再谈构造函数 1、引入 1&#xff09;构造函数体赋值 在创建对象时&#xff0c;编译器通过调用构造函数&#xff0c;给对象中各个成员变量一个合适的初始值…...

差分--差分数组快速计算L到R值相加后的数组

目录 差分&#xff1a;思路代码&#xff1a; 原题链接 差分&#xff1a; 输入一个长度为 n 的整数序列。 接下来输入 m 个操作&#xff0c;每个操作包含三个整数 l,r,c &#xff0c;表示将序列中 [l,r] 之间的每个数加上 c 。 请你输出进行完所有操作后的序列。 输入格式 第…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...