TensorRT加速推理入门-1:Pytorch转ONNX
这篇文章,用于记录将TransReID的pytorch模型转换为onnx的学习过程,期间参考和学习了许多大佬编写的博客,在参考文章这一章节中都已列出,非常感谢。
1. 在pytorch下使用ONNX主要步骤
1.1. 环境准备
安装onnxruntime包
安装教程可参考:
onnx模型预测环境安装笔记
onnxruntime配置
CPU版本:
直接pip安装
pip install onnxruntime
GPU版本:
先查看自己CUDA版本然后在下面的链接去找对应的onnxruntime的版本
CUDA版本的查询,可参考这个
onnxruntime版本查询
查询到对应版本,直接pip安装即可,例如
pip install onnxruntime-gpu==1.13.1
安装onnxsim包
pip install onnx-simplifier
1.2. 搭建 PyTorch 模型(TransReID)
def get_net(model_path,opt_=False):if opt_:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")#cfg.freeze()train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)else:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)#state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']state_dict = torch.load(model_path, map_location=torch.device('cpu'))model_state_dict=net.state_dict()for key in list(state_dict.keys()):if key[7:] in model_state_dict.keys():model_state_dict[key[7:]]=state_dict[key]net.load_state_dict(model_state_dict)return net
1.3. pytorch模型转换为 ONNX 模型
这个提供了静态转换(静态转换支持静态输入)和动态转换(动态转换支持动态输入)两个函数,可根据需要选择。
def convert_onnx_dynamic(model,save_path,simp=False):x = torch.randn(4, 3, 256,128)input_name = 'input'output_name = 'class'torch.onnx.export(model,x,save_path,input_names = [input_name],output_names = [output_name],dynamic_axes= {input_name: {0: 'B'},output_name: {0: 'B'}})if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model,input_shapes={'input':(4,3,256,128)},dynamic_input_shape=True)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')def convert_onnx(model,save_path,batch=1,simp=False):input_names = ['input']output_names=['class']x = torch.randn(batch, 3, 256, 128)for para in model.parameters():para.requires_grad = False# model_script = torch.jit.script(model)# model_trace = torch.jit.trace(model, x)torch.onnx.export(model, x, save_path,input_names =input_names,output_names=output_names, opset_version=12)if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')
pytorch 转 onnx 仅仅需要一个函数 torch.onnx.export,来看看该函数的参数和用法。
torch.onnx.export(model, args, path, export_params, verbose, input_names, output_names, do_constant_folding, dynamic_axes, opset_version)
| 参数 | 用法 |
|---|---|
| model | 需要导出的pytorch模型 |
| args | 模型的任意一组输入(模拟实际输入数据的大小,比如三通道的512*512大小的图片,就可以设置为torch.randn(1, 3 , 512, 512) |
| path | 输出的onnx模型的位置,例如yolov5.onnx |
| export_params | 输出模型是否可训练。default=True,表示导出trained model, 否则untrained。 |
| verbose | 是否打印模型转换信息,default=None |
| opset_version | onnx算子集的版本 |
| input_names | 模型的输入节点名称(自己定义的),如果不写,默认输出数字类型 的名称 |
| output_name | 模型的输出节点名称(自己定义的), 如果不写,默认输出数字类型的名称 |
| do_constant_folding | 是否使用常量折叠,默认即可。default=True。 |
| dynamic_axes | 设置动态输入输出,用法:“输入输出名:[支持动态的维度”,如"支持动态的维度设置为[0, 2, 3]"则表示第0维,第2维,第3维支持动态输入输出。 |
| 模型的输入输出有时是可变的,如rnn,或者输出图像的batch可变,可通过该参数设置。如输入层的shape为(b, 3, h, w), 其中batch、height、width是可变的,但是chancel是固定三通道。 | 格式如下:1)仅list(int)dynamic_axes={‘input’:[0, 2, 3], ‘output’:{0:‘batch’, 1:‘c’}} 2)仅dict<int, string> dynamic_axes={‘input’:{‘input’:{0:‘batch’, 2:‘height’, 3:‘width’}, ‘output’:{0:‘batch’, 1:‘c’}} 3)mixed dynamic_axes={‘input’:{0:‘batch’, 2:‘height’, 3:‘width’}, ‘output’:[0,1]} |
注意onnx不支持结构中带有if语句的模型,如:
当我们在网络中嵌入一些if选择性的语句时,不好意思,模型不会考虑这些, 它只会记录下运行时走过的节点,不会根据if的实际情况来选择走哪条路, 所以势必会丢弃一部分节点,而丢弃哪些则是根据我们转模型时的输入来定的,一旦指定了,后面运行onnx模型都会如此。另一个问题就是,我们在代码中有一些循环或者迭代的操作时,要注意,尤其是我们的迭代次数是根据输入不同 会有变化时,也会因为这些操作导致后面的推理出现意外错误,正像前面说的,模型转换不喜欢不确定的东西,它会把这些变量dump成常量,所以会导致推理 错误。
对于实际部署的需求,很多时候pytorch是不满足的,所以需要转成其他模型格式来加快推理。常用的就是onnx,onnx天然支持很多框架模型的转换,如Pytorch,tf,darknet,caffe等。而pytorch也给我们提供了对应的接口,就是torch.onnx.export。下面具体到每一步。
原文来自:Windows下使用ONNX+pytorch记录
首先,环境和依赖:onnx包,cuda和cudnn,我用的版本号分别是1.7.0, 10.1, 7.5.4。
我们需要提供一个pytorch的模型,然后调用torch.onnx.export,同时还需要提供另外一些参数。我们一个个来分析,一是我们要给一个dummy input, 就是随便指定一个和我们实际输入时尺寸相同的一个随机数,是Tensor类型的,然后我们要指定转换的device,即是在gpu还是cpu。 然后我们要给一个input_names和output_names,这是绑定输入和输出,当然输入和输出可能不止一个,那就根据实际的输入和输出个数来给出name列表,
如果我们指定的输入和输出名和实际的网络结构不一致的话,onnx会自动给我们设置一个名字。一般是数字字符串。
输入和输出的绑定之后,我我们们可以看到还有一个参数叫做dynamic_axes,这是做什么的呢?哦,这是指定动态输入的,为了满足我们实际推理过程中,可能每张图片的分辨率不一样,所以允许我们给每个维度设置动态输入,这样是不是灵活多了?然后,设置完这些参数和输入,我们就可以开始转换模型了,如果不报错就是成功了,会在当前目录下生成一个.onnx文件。
原文来自: 一文掌握Pytorch-onnx-tensorrt模型转换
1.4 onnx-simplifier简化onnx模型
model_simp, check = simplify(onnx_model,input_shapes={'input':(4,3,256,128)},dynamic_input_shape=True)
Pytorch转换为ONNX的完整代码:pytorch_to_onnx.py
import json
import os
import onnx
import torch
import argparse
import torch.nn as nn
from onnxsim import simplify
from collections import OrderedDict
import torch.nn.functional as F# TransReID的模型构建需要的包
from model.make_model import *
from config import cfg
from datasets import make_dataloader os.environ['CUDA_VISIBLE_DEVICES'] = '1'def convert_onnx_dynamic(model,save_path,simp=False):x = torch.randn(4, 3, 256,128)input_name = 'input'output_name = 'class'torch.onnx.export(model,x,save_path,input_names = [input_name],output_names = [output_name],dynamic_axes= {input_name: {0: 'B'},output_name: {0: 'B'}})if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model,input_shapes={'input':(4,3,256,128)},dynamic_input_shape=True)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')def convert_onnx(model,save_path,batch=1,simp=False):input_names = ['input']output_names=['class']x = torch.randn(batch, 3, 256, 128)for para in model.parameters():para.requires_grad = False# model_script = torch.jit.script(model)# model_trace = torch.jit.trace(model, x)torch.onnx.export(model, x, save_path,input_names =input_names,output_names=output_names, opset_version=12)if simp:onnx_model = onnx.load(save_path) model_simp, check = simplify(onnx_model)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, save_path)print('simplify onnx done')def get_net(model_path,opt_=False):if opt_:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")#cfg.freeze()train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)else:cfg.merge_from_file("/home/TransReID-main/configs/OCC_Duke/vit_transreid_stride.yml")train_loader, train_loader_normal, val_loader, num_query, num_classes, camera_num, view_num = make_dataloader(cfg)net = make_model(cfg, num_class=num_classes, camera_num=camera_num, view_num = view_num)#state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']state_dict = torch.load(model_path, map_location=torch.device('cpu'))model_state_dict=net.state_dict()for key in list(state_dict.keys()):if key[7:] in model_state_dict.keys():model_state_dict[key[7:]]=state_dict[key]net.load_state_dict(model_state_dict)return netif __name__=="__main__":parser = argparse.ArgumentParser(description='torch to onnx describe.')parser.add_argument("--model_path",type = str,default="/home/TransReID-main/weights/vit_transreid_occ_duke.pth",help="torch weight path, default is MobileViT_Pytorch/weights-file/model_best.pth.tar.")parser.add_argument("--save_path",type=str,default="/home/TransReID-main/weights/vit_transreid_occ_duke_v2.onnx",help="save direction of onnx models,default is ./target/MobileViT.onnx.")parser.add_argument("--batch",type=int,default=1,help="batchsize of onnx models, default is 1.")parser.add_argument("--opt",default=False, action='store_true',help="model optmization , default is False.")parser.add_argument("--dynamic",default=False, action='store_true',help="export dynamic onnx model , default is False.")args = parser.parse_args()
# print(args)#net = get_net(args.model_path,opt_=args.opt)net = get_net(args.model_path)if args.dynamic:convert_onnx_dynamic(net,args.save_path,simp=True)else:with torch.no_grad():convert_onnx(net,args.save_path,simp=True,batch=args.batch)
1.5 查看onnx模型
当将pytorch模型保存为 ONNX 之后,可以使用一款名为 Netron 的软件打开 .onnx 文件,查看模型结构。
2. 参考文章
[1] Windows下使用ONNX+pytorch记录
[2] pytorch-onnx-tensorrt全链路简单教程(支持动态输入)
[3] PyTorch语义分割模型转ONNX以及对比转换后的效果(PyTorch2ONNX、Torch2ONNX、pth2onnx、pt2onnx、修改名称、转换、测试、加载ONNX、运行ONNX)
[4] ONNX系列一:ONNX的使用,从转化到推理
相关文章:
TensorRT加速推理入门-1:Pytorch转ONNX
这篇文章,用于记录将TransReID的pytorch模型转换为onnx的学习过程,期间参考和学习了许多大佬编写的博客,在参考文章这一章节中都已列出,非常感谢。 1. 在pytorch下使用ONNX主要步骤 1.1. 环境准备 安装onnxruntime包 安装教程可…...
springboot常用扩展点
当涉及到Spring Boot的扩展和自定义时,Spring Boot提供了一些扩展点,使开发人员可以根据自己的需求轻松地扩展和定制Spring Boot的行为。本篇博客将介绍几个常用的Spring Boot扩展点,并提供相应的代码示例。 1. 自定义Starter(面试常问) Sp…...
19道ElasticSearch面试题(很全)
点击下载《19道ElasticSearch面试题(很全)》 1. elasticsearch的一些调优手段 1、设计阶段调优 (1)根据业务增量需求,采取基于日期模板创建索引,通过 roll over API 滚动索引; (…...
向爬虫而生---Redis 拓宽篇3 <GEO模块>
前言: 继上一章: 向爬虫而生---Redis 拓宽篇2 <Pub/Sub发布订阅>-CSDN博客 这一章的用处其实不是特别大,主要是针对一些地图和距离业务的;就是Redis的GEO模块。 GEO模块是Redis提供的一种高效的地理位置数据管理方案,它允许我们存储和查询…...
Vue项目里实现json对象转formData数据
平常调用后端接口传参都是json对象,当提交表单遇到有附件需要传递时,通常是把附件上传单独做个接口,也有遇到后端让提交接口一并把附件传递到后端,这种情况需要把参数转成formData的数据,需要用到new FormData()。json…...
leetcode刷题记录
栈 2696. 删除子串后的字符串最小长度 哈希表 1. 两数之和 用map来保存每个数和他的索引 383. 赎金信 用map来存储字符的个数 链表 2. 两数相加 指针的移动 动态规划 53. 最大子数组和 2707. 字符串中的额外字符 递归 101. 对称二叉树 数学 1276. 不浪费原料的汉堡…...
SpringMVC通用后台管理系统源码
整体的SSM后台管理框架功能已经初具雏形,前端界面风格采用了结构简单、 性能优良、页面美观大的Layui页面展示框架 数据库支持了SQLserver,只需修改配置文件即可实现数据库之间的转换。 系统工具中加入了定时任务管理和cron生成器,轻松实现系统调度问…...
深度解析Dubbo的基本应用与高级应用:负载均衡、服务超时、集群容错、服务降级、本地存根、本地伪装、参数回调等关键技术详解
负载均衡 官网地址: http://dubbo.apache.org/zh/docs/v2.7/user/examples/loadbalance/ 如果在消费端和服务端都配置了负载均衡策略, 以消费端为准。 这其中比较难理解的就是最少活跃调用数是如何进行统计的? 讲道理, 最少活跃数…...
备战2024美赛数学建模,文末获取历史优秀论文
总说(历年美赛优秀论文可获取) 数模的题型千变万化,我今天想讲的主要是一些「画图」、「建模」、「写作」和「论文结构」的思路,这些往往是美赛阅卷官最看重的点,突破了这些点,才能真正让你的美赛论文更上…...
Java加密解密大全(MD5、RSA)
目录 一、MD5加密二、RSA加解密(公加私解,私加公解)三、RSA私钥加密四、RSA私钥加密PKCS1Padding模式 一、MD5加密 密文形式:5eb63bbbe01eeed093cb22bb8f5acdc3 import java.math.BigInteger; import java.security.MessageDigest; import java.security…...
C语言程序设计考试掌握这些题妥妥拿绩点(写给即将C语言考试的小猿猴们)
目录 开篇说两句1. 水仙花数题目描述分析代码示例 2. 斐波那契数列题目描述分析代码示例 3. 猴子吃桃问题题目描述分析代码示例 4. 物体自由落地题目描述分析代码示例 5. 矩阵对角线元素之和题目描述分析代码示例 6. 求素数题目描述分析代码示例 7. 最大公约数和最小公倍数题目…...
编译ZLMediaKit(win10+msvc2019_x64)
前言 因工作需要,需要ZLMediaKit,为方便抓包分析,最好在windows系统上测试,但使用自己编译的第三方库一直出问题,无法编译通过。本文档记录下win10上的编译过程,供有需要的小伙伴使用 一、需要安装的软件…...
JS-基础语法(一)
JavaScript简单介绍 变量 常量 数据类型 类型转换 案例 1.JavaScript简单介绍 JavaScript 是什么? 是一种运行在客户端(浏览器)的编程语言,可以实现人机交互效果。 JS的作用 JavaScript的组成 JSECMAScript( 基础语法 )…...
18款Visual Studio实用插件(更新)
前言 俗话说的好工欲善其事必先利其器,安装一些Visual Studio实用插件对自己日常的开发和工作效率能够大大的提升,避免996从选一款好的IDE实用插件开始。以下是我认为比较实用的Visual Studio插件希望对大家有用,大家有更好的插件推荐可在文…...
三、java线性表(顺序表、链表、栈、队列)
java线性表 三、线性表1.1 顺序表1.2 链表1.2.1 单向链表(Singly Linked List)1.2.2 双向链表(Doubly Linked List) 1.3 LinkedList VS ArrayList1.3.7 使用 LinkedList 的场景 1.4 栈1.5 队列 三、线性表 线性表是一种经典的数据…...
PiflowX-MysqlCdc组件
MysqlCdc组件 组件说明 MySQL CDC连接器允许从MySQL数据库读取快照数据和增量数据。 计算引擎 flink 组件分组 cdc 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子hostnameHostname“”无是MySQL…...
2023春季李宏毅机器学习笔记 03 :机器如何生成文句
资料 课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、大语言模型的两种…...
dplayer播放hls格式视频并自动开始播放
监控视频流为hls格式,需要打开或刷新页面自动开始播放,需要安装dplayer和hls.js插件,插件直接npm装就行,上代码 import DPlayer from dplayer import Hls from hls.js //jquery是用来注册点击事件,实现自动开始播放 i…...
使用Vivado Design Suite平台板、将IP目录与平台板流一起使用
使用Vivado Design Suite平台板流 Vivado设计套件允许您使用AMD目标设计平台板(TDP)创建项目,或者已经添加到板库的用户指定板。当您选择特定板,Vivado设计工具显示有关板的信息,并启用其他设计器作为IP定制的一部分以…...
PACS医学影像报告管理系统源码带CT三维后处理技术
PACS从各种医学影像检查设备中获取、存储、处理影像数据,传输到体检信息系统中,生成图文并茂的体检报告,满足体检中心高水准、高效率影像处理的需要。 自主知识产权:拥有完整知识产权,能够同其他模块无缝对接 国际标准…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
