当前位置: 首页 > news >正文

【LLM 论文阅读】NEFTU N E: LLM微调的免费午餐

指令微调的局限性

指令微调对于训练llm的能力至关重要,而模型的有用性在很大程度上取决于我们从小指令数据集中获得最大信息的能力。在本文中,我们提出在微调正向传递的过程中,在训练数据的嵌入向量中添加随机噪声,论文实验显示这个简单的技巧可以提高指令微调的效果,通常有很大的优势,而不需要额外的计算或数据开销。

NEFTune虽然简单,但对下游的会话质量有很大的影响。当像LLaMA-2-7B这样的原始LLM被噪声嵌入所微调时,AlpacaEval从29.8%提高到64.7%(图1),令人印象深刻地提高了约35个百分点。NEFTune可以实现在会话任务上惊人的性能跳跃,同时在事实问题回答基线上保持性能,这种技术似乎是LLM微调的免费午餐

代码仓库:https://github.com/neelsjain/NEFTune
论文链接:https://arxiv.org/abs/2310.05914

NEFTune原理

指令模型是在由指令和响应对组成的数据集上进行训练的。

NEFTune的每一步都首先从数据集中采样一条指令,并将其标记转换为嵌入向量。

然后,NEFTune通过向嵌入中添加一个随机噪声向量来脱离标准训练。

噪声通过采样iid均匀分布产生,每个样本都在范围内[−1,1],然后将整个噪声向量缩放为 α / L d α/\sqrt{Ld} α/Ld ,其中L为序列长度,d为嵌入维数,α为可调参数。

for step_count in range(start_step_count, args.max_steps):train_loss = 0for _ in range(accumulation_steps):try:data = next(epoch_iterator)except StopIteration:sampler.set_epoch(sampler.epoch + 1)dataloader = dataloader_fullepoch_iterator = iter(dataloader)data = next(epoch_iterator)if args.neftune_alpha is not None:if isinstance(model, torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel):embed_device = model._fsdp_wrapped_module.model.embed_tokens.weight.deviceembeds_init = model._fsdp_wrapped_module.model.embed_tokens.forward(data['input_ids'].to(embed_device))### add noise to embedsinput_mask = data['attention_mask'].to(embeds_init) # B x Linput_lengths = torch.sum(input_mask, 1) # Bnoise_ = torch.zeros_like(embeds_init).uniform_(-1,1)delta = noise_ * input_mask.unsqueeze(2)dims = input_lengths * embeds_init.size(-1)mag = args.neftune_alpha / torch.sqrt(dims)delta = (delta * mag.view(-1, 1, 1)).detach()data['inputs_embeds'] = delta + embeds_initdata['input_ids'] = None### add noise to embedsout = model(**data)(out.loss/accumulation_steps).backward()train_loss += out.loss.item()/accumulation_stepsmodel.clip_grad_norm_(args.max_grad_norm

实验结果

  • NEFTune提高了文本质量

从表1中,我们可以看到7B尺度的所有数据集的增加,平均增加了15.1%,这表明NEFT训练显著提高了对话能力和回答质量。此外,我们可以从图2中看到,我们也看到了对旧模型的改进,如LLaMA-1和OPT。有趣的是,根据ChatGPT,我们看到ShareGPT的改进不如其他数据集改进。然而,这并没有反映在GPT-4的评估中。

从表2中我们可以看到,在NEFTune加入70B参数模型后,WinRate从75.03%上升到88.81%(+13.78%)

  • NEFTune可以改进Chat模型

从表2中,我们可以看到,在Evol-指令上进一步对LLaMA-2 Chat进行微调(7B)可以将LLaMA-2聊天的性能提高3%。这个模型已经被广泛地调整了,使用了多轮的RLHF。然而,在NEFTune中,我们看到了相当大的额外性能增长10%,尽管我们注意到这个检查点模型的一些功能可能会受到影响,比如它避免输出有毒行为的能力。

  • 基础能力的影响

一个潜在的担忧是,NEFTune会牺牲其他能力为代价来提高会话能力,但是比较微小。我们评估了OpenLLM排行榜任务,使用LMEval利用MMLU、ARC、HellaSwag和真实QA。这些基准让我们得以评测模型知识、推理和真实性。图3显示了分数保持稳定,NEFTune保留了模型功能。

  • NEFTune对QLORA有效

论文表明,NEFTune还通过使用量化低等级适配器(QLORA)进行训练,提高了在受限资源环境下的性能。对于30B,论文将有效批处理规模增加一倍,并将学习率提高一半。表3显示,当使用QLORA进行训练时,在所有研究的模型大小和数据集中,空间性能都有所提高。然而,性能的提高没有全面微调的明显。这可能是因为需要不同的超参数(即微调周期的数量),或者因为量化到4位。

  • 一个定性的例子

在这里,论文展示了一个来自LLaMA-2的含NEFT的羊驼的定性例子。我们从这个例子中可以看到,羊驼产生的回复更短,只给出了量子计算的一个非常基本的定义,提到了量子位元、叠加、纠缠和增加的复杂计算。在Alpaca-NEFT回复中,该模型提供了一个更流畅的答案,对这些主题,更清晰的解释了叠加和量子纠缠,并提到了潜在的应用。我们认为这个例子代表了由NEFT引起的各种变化。

结论

NEFTune的成功指出了算法和正则化器在LLM训练中的重要性被忽视。与多年来一直在研究正则化和过拟合的计算机视觉社区不同,LLM社区倾向于使用标准化的训练循环,而不是泛化。在这种环境下,LLM的研究人员已经专注于数据集和模型缩放作为前进的主要路径。考虑到NEFTune的一致性收益,以及在小指令数据集上的过拟合的倾向,似乎正则化值得在LLM设置中重新加入。

论文的研究有几个局限性:

  • 采用AlpacaEval作为llm教学遵循能力的中心指标,它受到单一法官(GPT-4)偏见的影响。
  • 此外,由于有限的计算资源,无法验证在多个数据集的更大的70B变体上的成功,不得不对大多数NEFTune运行依赖固定的超参数,而不是扫描。
  • 最后,尽管我们进行了实证研究,但我们尚未确定NEFTune工作的原因。

相关文章:

【LLM 论文阅读】NEFTU N E: LLM微调的免费午餐

指令微调的局限性 指令微调对于训练llm的能力至关重要,而模型的有用性在很大程度上取决于我们从小指令数据集中获得最大信息的能力。在本文中,我们提出在微调正向传递的过程中,在训练数据的嵌入向量中添加随机噪声,论文实验显示这…...

JS新手入门笔记整理:对象

对象可以分为两种:一种是“自定义对象”,另外一种是“内置对象”。自定义对象,指的是需要我们自己定义的对象。内置对象,指的是不需要我们自己定义的(即系统已经定义好的)、可以直接使用的对象。在JavaScri…...

Python GIL 一文全知道!

GIL 作为 Python 开发者心中永远的痛,在最近即将到来的更新中,终于要彻底解决了,整个 Python 社群都沸腾了 什么是GIL? GIL是英文学名global interpreter lock的缩写,中文翻译成全局解释器锁。GIL需要解决的是线程竞…...

数据库级别的MD5加密(扩展)

首先,我们要知道什么是MD5? 1.主要是增强算法的复杂性和不可逆性 2.MD5不可逆,具体的值MD5是一样的 3.MD5破解网站的原理,背后有一个字典 代码案例: -- 加密 update testMD5 set pwdmd5(pwd) where id1; update testMD5 set…...

Docker安装Jenkins,配置Maven和Java

前言 这是一个java的springboot项目,使用maven构建 安装准备 需要将maven和jdk安装在服务器上,Jenkins需要用到,还有创建一个jenkins的目录,安装命令如下: docker run -d -uroot -p 9095:8080 -p 50000:50000 --n…...

游戏分组(100用例)C卷 (JavaPythonC语言C++Node.js)

部门准备举办一场王者荣耀表演赛,有10名游戏爱好者参与,分为两队,每队5人。 每位参与者都有一个评分,代表着他的游戏水平。为了表演赛尽可能精彩,我们需要把10名参赛者分为实力尽量相近的两队。一队的实力可以表示为这一队5名队员的评分总和。 现在给你10名参与者的游戏水…...

python函数装饰器保存信息

1 python函数装饰器保存信息 python函数装饰器,可以通过实例属性、全局变量、非局部变量和函数属性,来保存被装饰函数的状态信息。 1.1 统计调用并跟踪 描述 通过装饰器统计函数调用次数,并且用打印来跟踪调用记录。 此装饰器用类的__ca…...

AI真正的Killer App 仍然缺席

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

Docker 镜像以及镜像分层

Docker 镜像以及镜像分层 1 什么是镜像2 Docker镜像加载原理2.1 UnionFs:联合文件系统2.2 Docker镜像加载原理2.3 Docker镜像的特点 3 镜像的分层结构4 可写的容器层 1 什么是镜像 镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行…...

aigc 启动器 sd-webui-aki-v4 decode_base64_to_file

下载地址&#xff1a; SD-WebUI启动器 绘世-启动器 | 万物档案 decode_base64_to_file报错&#xff1a; File "E:\BaiduNetdiskDownload\stable diffusion\sd-webui-aki-v4\extensions\sd-webui-controlnet\scripts\external_code.py", line 7, in <module>fr…...

【C++进阶05】AVL树的介绍及模拟实现

一、AVL树的概念 二叉搜索树的缺点 二叉搜索树虽可以缩短查找效率 但如果数据有序或接近有序 二叉搜索树将退化为单支树 查找元素相当于在顺序表中搜索元素&#xff0c;效率低下 AVL树便是解决此问题 向二叉搜索树中插入新结点 并保证每个结点的左右子树 高度之差的绝对值不超…...

MySQL视图 索引 面试题

一. 视图 视图&#xff1a;一种虚拟存在的表&#xff0c;行和列的数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的&#xff0c;只保存了sql逻辑&#xff0c;不保存查询结果 视图语法 -- 创建 create view 视图名 as 查询语句;-- 使用 select * f…...

JAVA实现文件上传至阿里云

注册阿里云账号后,开通好对象存储服务&#xff08;OSS&#xff09;&#xff0c;三个月试用 阿里云登录页 (aliyun.com) 目录 一.创建Bucket 二.获取AccessKey&#xff08;密钥&#xff09; 三.参考官方SDK文件&#xff0c;编写入门程序 1.复制阿里云OSS依赖&#xff0c;粘贴…...

设计模式之外观模式【结构型模式】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档> 学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某…...

Qt QCheckBox复选按钮控件

文章目录 1 属性和方法1.1 文本1.2 三态1.3 自动排他1.4 信号和槽 2 实例2.1 布局2.2 代码实现 Qt中的复选按钮类是QCheckBox它和单选按钮很相似&#xff0c;单选按钮常用在“多选一”的场景&#xff0c;而复选按钮常用在"多选多"的场景比如喜欢的水果选项中&#xf…...

加速科技ST2500 数模混合信号测试设备累计装机量突破500台!

国产数字机&#xff0c;测试中国芯&#xff01;新年伊始&#xff0c;国产半导体测试设备领军企业加速科技迎来了振奋人心的一刻&#xff0c;ST2500 数模混合信号测试设备累计装机量突破500台&#xff01;加速科技凭借其持续的创新能力、完善的解决方案能力、专业热忱的本地化服…...

ASP.NETCore WebAPI 入门 杨中科

ASP.NETCore WebAPI入门1 回顾 mvc开发模式 前端代码和后端代码是混在一个项目之中 WEB API 1、什么是结构化的Http接口。Json。 2、Web API项目的搭建。 3、Web API项目没有Views文件夹。 4、运行项目&#xff0c;解读代码结构。 5、【启用OpenAPI支持】→>swagger,在界…...

问题 C: 活动选择

题目描述 学校在最近几天有n个活动&#xff0c;这些活动都需要使用学校的大礼堂&#xff0c;在同一时间&#xff0c;礼堂只能被一个活动使。由于有些活动时间上有冲突&#xff0c;学校办公室人员只好让一些活动放弃使用礼堂而使用其他教室。    现在给出n个活动使用礼堂的起…...

SpringBoot学习(五)-Spring Security配置与应用

注&#xff1a;此为笔者学习狂神说SpringBoot的笔记&#xff0c;其中包含个人的笔记和理解&#xff0c;仅做学习笔记之用&#xff0c;更多详细资讯请出门左拐B站&#xff1a;狂神说!!! Spring Security Spring Security是一个基于Java的开源框架&#xff0c;用于在Java应用程…...

Java解决删除子串后的字符串最小长度

Java解决删除子串后的字符串最小长度 01 题目 给你一个仅由 大写 英文字符组成的字符串 s 。 你可以对此字符串执行一些操作&#xff0c;在每一步操作中&#xff0c;你可以从 s 中删除 任一个 "AB" 或 "CD" 子字符串。 通过执行操作&#xff0c;删除所…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...