回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测
回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测
目录
- 回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测(完整源码和数据)
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整源码和数据获取方式(资源出下载):Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1); % 输入特征维度%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 参数设置
%% 获取最优正则化系数 C 和核函数参数 S
Kernel_type1 = 'rbf'; %核函数类型1
Kernel_type2 = 'poly'; %核函数类型2%% 适应度函数
fobj=@(X)fobj(X,p_train,t_train,p_test,t_test,Kernel_type1,Kernel_type2);%% 优化算法参数设置
pop=10;
Max_iter=20;
ub=[20 10^(3) 10^(3) 10 1]; %优化的参量分别为:正则化系数C,rbf核函数的核系数S(接下)
lb=[1 10^(-3) 10^(-3) 1 0]; %多项式核函数的两个核系数poly1和poly2,以及核权重系数w
dim=5;
%% 优化算法
[Best_score,Best_P,curve] = RIME(pop, Max_iter, lb, ub, dim, fobj);%% 训练模型
%% 重新训练并进行预测
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测
回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变…...

【AWS系列】巧用 G5g 畅游Android流媒体游戏
序言 Amazon EC2 G5g 实例由 AWS Graviton2 处理器提供支持,并配备 NVIDIA T4G Tensor Core GPU,可为 Android 游戏流媒体等图形工作负载提供 Amazon EC2 中最佳的性价比。它们是第一个具有 GPU 加速功能的基于 Arm 的实例。 借助 G5g 实例,游…...
GNSS数据及产品下载地址(FTP/HTTP)
GNSS数据/产品下载地址 天线改正文件(atx)下载Index of /pub/station/general 通用广播星历(brdc/brdm):ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily/YYYY/brdcftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/daily/rinex3/YYYY/brdmftp://epncb.oma.b…...

【STM32】STM32学习笔记-DMA数据转运+AD多通道(24)
00. 目录 文章目录 00. 目录01. DMA简介02. DMA相关API2.1 DMA_Init2.2 DMA_InitTypeDef2.3 DMA_Cmd2.4 DMA_SetCurrDataCounter2.5 DMA_GetFlagStatus2.6 DMA_ClearFlag 03. DMA数据单通道接线图04. DMA数据单通道示例05. DMA数据多通道接线图06. DMA数据多通道示例一07. DMA数…...

即时设计:设计流程图,让您的设计稿更具条理和逻辑
流程图小助手 更多内容 在设计工作中,流程图是一种重要的工具,它可以帮助设计师清晰地展示设计思路和流程,提升设计的条理性和逻辑性。今天,我们要向您推荐一款强大的设计工具,它可以帮助您轻松为设计稿设计流程图&a…...
单个独立按键控制直流电机开关
/*----------------------------------------------- 内容:对应的电机接口需用杜邦线连接到uln2003电机控制端 使用5V-12V 小功率电机皆可 ------------------------------------------------*/ #include<reg52.h> //包含头文件,一般情况…...
前端插件库-VUE3 使用 JSEncrypt 插件
JSEncrypt 是一个用于在客户端进行加密的 JavaScript 库。它基于 RSA 加密算法,可以用于在浏览器中对数据进行加密和解密操作。 以下是使用 JSEncrypt 进行加密和解密的基本示例: 第一步:安装 JSEncrypt 首先,你需要引入 JSEn…...

Neo4j备份
这里主要讲Neo4j在windows环境下如何备份,Linux环境同理 Neo4j恢复看这里:Neo4j恢复-CSDN博客 Step1:停服 关闭neo4j.bat console会话窗口即可 Step2: 备份 找到数据目录,并备份、压缩 copy即可 data - 20240108.7z Step3: 启动服务 进入命令行&am…...

【LangChain学习之旅】—(5) 提示工程(上):用少样本FewShotTemplate和ExampleSelector创建应景文案
【LangChain学习之旅】—(5) 提示工程(上):用少样本FewShotTemplate和ExampleSelector创建应景文案 提示的结构LangChain 提示模板的类型使用 PromptTemplate使用 ChatPromptTemplateFewShot 的思想起源使用 FewShotPr…...
Python从入门到精通秘籍一
Python速成,知识点超详细,跟着这个系列边输入边学习体会吧! 一、字面量 下面是一些使用代码示例来说明Python的字面量的具体用法: 1.数字字面量: integer_literal = 42 # 整数字面量 float_literal = 3.14 # 浮点数字面量 complex_literal = 2 + 3j # 复数字面量# …...

【IC设计】移位寄存器
目录 理论讲解背景介绍什么是移位寄存器按工作模式分类verilog语法注意事项 设计实例循环移位寄存器算术双向移位寄存器5位线性反馈移位寄存器伪随机码发生器3位线性反馈移位寄存器32位线性反馈移位寄存器串行移位寄存器(打4拍)双向移位寄存器࿱…...

【Flutter 开发实战】Dart 基础篇:最基本的语法内容
在深入了解 Dart 这门编程语言之前,我们需要了解一些关于 Dart 的最基本的知识,像是常量、变量、函数等等,这样才能够让我们的开发效率更上一层楼。在本节,我们将探讨一些基础语法,包括入口方法 main、变量、常量以及命…...

中国光伏展
中国光伏展是中国最大的光伏产业展览会,每年在国内举办一次。该展览会汇集了国内外光伏行业的领先企业和专业人士,展示最新的光伏技术、产品和解决方案。 中国光伏展旨在促进光伏行业的发展和创新,提升光伏产业的国际竞争力。展览会涵盖了光伏…...

Nacos的统一配置管理
Nacos的统一配置管理 一 项目添加nacos和bootstrap依赖二 nacos客户端配置2.1 创建命名空间2.2 创建配置 三、配置bootstrap.yml四 不同环境配置切换步骤一:nacos中添加开发、测试配置步骤二:指定bootstrap.yml中spring.profiles.active参数值 扩展链接 …...

SpringBoot项目docker镜像生成
1. 本文思路 拉取基础镜像基于镜像创建容器在容器中,安装所需依赖部署脚本提交容器,生成新的镜像编写Dockerfile,添加启动命令,生成最终镜像导出镜像 2. 操作步骤 2.1 基础环境 # 拉取镜像 docker pull centos:7.6.1810 # 运行…...

JDBC初体验(二)——增、删、改、查
本课目标 理解SQL注入的概念 掌握 PreparedStatement 接口的使用 熟练使用JDBC完成数据库的增、删、改、查操作 SQL注入 注入原理:利用现有应用程序,将(恶意的)SQL命令注入到后台数据库引擎执行能力,它可以通过在…...
Eva.js是什么(互动小游戏开发)
前言 Eva.js 是一个专注于开发互动游戏项目的前端游戏引擎。 易用:Eva.js 提供开箱即用的游戏组件供开发人员立即使用。是的,它简单而优雅! 高性能:Eva.js 由高效的运行时和渲染管道 (Pixi.JS) 提供支持,这使得释放设…...
监听 beforeunload 事件,阻止页面刷新导致的信息丢失
尤其是一个有编辑器的页面,可以监听 windwo.beforeunload 事件,在用户试图关闭当前标签页的时候提醒用户,内容可能会丢失。 Window:beforeunload 事件 - Web API 接口参考 | MDN...

Java 常见缓存详解以及解决方案
一. 演示Mybatis 一级缓存 首先我们准备一个接口 两个实现的方法, 当我们调用这个queryAll()方法时我们需要调用selectAll()方法来查询数据 调用此接口实现效果 这个时候我们就可以发现了问题,我们调用方法…...

Golang 交叉编译之一文详解
博客原文 文章目录 Golang 中的交叉编译不同操作系统间的编译Linux 下编译windowsmacos windows 下编译Linuxmacos macos 下编译Linuxwindows 不同架构下的编译amd64x86 参考 Golang 中的交叉编译 在 Golang 中,交叉编译指的是在同一台机器上生成针对不同操作系统或…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...