机器学习之独热编码(One-Hot)
一、背景
在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。这些特征值并不是连续的,而是离散的,无序的。通常我们需要对其进行特征数字化。那什么是特征数字化呢?例子如下:
性别特征:["男","女"] =>[0,1]
祖国特征:["中国","美国,"法国"] =>[0,1,2]
运动特征:["足球","篮球","羽毛球","乒乓球"] =>[0,1,2,3]
假如某个样本,它的特征是这样的["男","中国","乒乓球"],我们可以用 [0,0,3] 来表示,但是这样的特征处理并不能直接放入机器学习算法中,因为类别之间是无序的。
二、定义
独热编码是指将离散型的特征数据映射到一个高维空间中,每个可能的取值都对应于高维空间的一个点,在这些点上取值为1,其余均为0,因此独热编码也被称为“一位有效编码”或“One-of-K encoding”。
回到一开始的例子,性别特征:["男","女"],按照N位状态寄存器来对N个状态进行编码的原理:
性别特征:["男","女"](这里N=2 二维数据)
男 => 10
女 => 01
地区特征:["北京","上海,"深圳"](这里N=3,三维数据):
北京 => 100
上海 => 010
深圳 => 001
工作特征:["演员","厨师","公务员","工程师","律师"](这里N=5,五维数据):
演员 => 10000
老师 => 01000
公务员 => 00100
工程师 => 00010
消防员 => 00001
三、优缺点
独热编码的优点有以下几个:
- 能够处理非数值属性。比如血型、性别等
- 一定程度上扩充了特征。
- 编码后的向量是稀疏向量,只有一位是 1,其他都是 0,可以利用向量的稀疏来节省存储空间。
- 能够处理缺失值。当所有位都是 0,表示发生了缺失。此时可以采用处理缺失值提到的高维映射方法,用第 N+1 位来表示缺失值。
当然,独热编码也存在一些缺点:
高维度特征会带来以下几个方面问题:
- KNN 算法中,高维空间下两点之间的距离很难得到有效的衡量;
- 逻辑回归模型中,参数的数量会随着维度的增高而增加,导致模型复杂,出现过拟合问题;
- 通常只有部分维度是对分类、预测有帮助,需要借助特征选择来降低维度。
四、代码
from sklearn import preprocessing enc = preprocessing.OneHotEncoder() enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]]) #这里一共有4个数据,3种特征array = enc.transform([[0,1,3]]).toarray() #这里使用一个新的数据来测试print array # [[ 1 0 0 1 0 0 0 0 1]]
参考:
独热编码(One-Hot Encoding)-CSDN博客
机器学习:数据预处理之独热编码(One-Hot)详解-CSDN博客
相关文章:
机器学习之独热编码(One-Hot)
一、背景 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。这些特征值并不是连续的,而是离散的,无序的。通常我们需要对其进行特征数字化。…...
IIS+SDK+VS2010+SP1+SQL server2012全套工具包及安装教程
前言 今天花了两个半小时安装这一整套配置,这个文章的目标是将安装时间缩短到1个小时 正文 安装步骤如下: VS2010 —> service pack 1 —>SQL server2012 —> IIS —> SDK 工具包链接如下: https://pan.baidu.com/s/1WQD-KfiUW…...
【昕宝爸爸小模块】HashMap用在并发场景存在的问题
HashMap用在并发场景存在的问题 一、✅典型解析1.1 ✅JDK 1.8中1.2 ✅JDK 1.7中1.3 ✅如何避免这些问题 二、 ✅HashMap并发场景详解2.1 ✅扩容过程2.2 ✅ 并发现象 三、✅拓展知识仓3.1 ✅1.7为什么要将rehash的节点作为新链表的根节点3.2 ✅1.8是如何解决这个问题的3.3 ✅除了…...
数据库索引
1、什么是索引?为什么要用索引? 1.1、索引的含义 数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询,更新数据库中表的数据。索引的实现通常使用B树和变种的B树(MySQL常用的索引就是B树&…...
开源知识库工具推荐:低成本搭建知识库
在信息爆炸的时代,企业和个体对知识的存储和管理需求日益增强。开源知识库工具因其开源、免费、高效的特性,成为了众多组织和个人的首选。如果你正在寻找一款优秀的开源知识库工具,本文将为你推荐三款性能优异的产品,感兴趣就往下…...
C# Chart控件
// 定义图表区域 this.chart1.ChartAreas.Clear(); ChartArea chartArea1 new ChartArea("C1"); this.chart1.ChartAreas.Add(chartArea1); //定义存储和显示点的容器 this.chart1.Series.Clear(); Series series1 new Series("OK"); //series1.ChartAre…...
OpenCV C++ 图像处理实战 ——《多尺度自适应Gamma矫正的低照图像增强》
OpenCV C++ 图像处理实战 ——《多尺度自适应Gamma矫正的低照图像增强》 一、结果演示二、多尺度自适应Gamma矫正的低照度图像增强2.1HSI颜色空间2.1.1 功能源码2.2 自适应于直方图分布的 Gamma 矫正2.2.1 功能源码2.3 多尺度 Retinex 分解与明度增强2.3.1 功能源码三、源码测试…...
原型模式
为什么要使用原型模式 不用重新初始化对象,而是动态地获得对象运行时的状态。适用于当创建对象的成本较高时,如需进行复杂的数据库操作或复杂计算才能获得初始数据。 优点是可以隐藏对象创建的细节,减少重复的初始化代码;可以在…...
linux centos 账户管理命令
在CentOS或其他基于Linux的系统上,账户管理涉及到用户的创建、修改、删除以及密码的管理等任务。 linux Centos账户管理命令 1 创建用户: useradd username 这将创建一个新用户,但默认不会创建家目录。如果想要创建家目录,可以…...
【JavaWeb学习笔记】19 - 网购家居项目开发(上)
一、项目开发流程 程序框架图 项目具体分层方案 MVC 1、说明是MVC MVC全称: Mode模型、View视图、Controller控制器。 MVC最早出现在JavaEE三层中的Web层,它可以有效的指导WEB层的代码如何有效分离,单独工作。 View视图:只负责数据和界面的显示&…...
强化学习的数学原理学习笔记 - RL基础知识
文章目录 Roadmap🟡基础概念贝尔曼方程(Bellman Equation)基本形式矩阵-向量形式迭代求解状态值 vs. 动作值 🟡贝尔曼最优方程(Bellman Optimality Equation,BOE)基本形式迭代求解 本系列文章介…...
winSCP是什么?它有什么功能和特性?它值不值得我们去学习?我们该如何去学习呢?
WinSCP是一款免费的开源SFTP、SCP、FTP和WebDAV客户端,用于Windows操作系统。它提供了一个图形化界面,使用户可以方便地在本地计算机和远程计算机之间传输文件。 WinSCP支持SSH加密通信和多种认证方法,包括密码、公钥和键盘交互。它还支持自…...
SpringBoot的数据层解决方案
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开心好久好久😎 📚系列专栏:Java全栈,…...
极客时间-《如何成为学习高手》文章笔记 + 个人思考
极客时间-《如何成为学习高手》文章笔记 个人思考 底层思维高效学习05|教你全面提升专注力,学习时不再走神06|教你高效复习:巧用学习神器取得好成绩07|我考北大中文系时,15 天背下 10 门专业课的连点成线法…...
【前端】下载文件方法
1.window.open 我最初使用的方法就是这个,只要提供了文件的服务器地址,使用window.open也就是在新窗口打开,这时浏览器会自动执行下载。 2.a标签 其实window.open和a标签是一样的,只是a标签是要用户点击触发,而wind…...
虚幻UE 材质-纹理 1
本篇笔记主要讲两个纹理内的内容:渲染目标和媒体纹理 媒体纹理可以参考之前的笔记:虚幻UE 媒体播放器-视频转成材质-播放视频 所以本篇主要讲两个组件:场景捕获2D、场景捕获立方体 两个纹理:渲染目标、立方体渲染目标 三个功能&am…...
回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测
回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变…...
【AWS系列】巧用 G5g 畅游Android流媒体游戏
序言 Amazon EC2 G5g 实例由 AWS Graviton2 处理器提供支持,并配备 NVIDIA T4G Tensor Core GPU,可为 Android 游戏流媒体等图形工作负载提供 Amazon EC2 中最佳的性价比。它们是第一个具有 GPU 加速功能的基于 Arm 的实例。 借助 G5g 实例,游…...
GNSS数据及产品下载地址(FTP/HTTP)
GNSS数据/产品下载地址 天线改正文件(atx)下载Index of /pub/station/general 通用广播星历(brdc/brdm):ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily/YYYY/brdcftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/daily/rinex3/YYYY/brdmftp://epncb.oma.b…...
【STM32】STM32学习笔记-DMA数据转运+AD多通道(24)
00. 目录 文章目录 00. 目录01. DMA简介02. DMA相关API2.1 DMA_Init2.2 DMA_InitTypeDef2.3 DMA_Cmd2.4 DMA_SetCurrDataCounter2.5 DMA_GetFlagStatus2.6 DMA_ClearFlag 03. DMA数据单通道接线图04. DMA数据单通道示例05. DMA数据多通道接线图06. DMA数据多通道示例一07. DMA数…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 :邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
