2024美赛数学建模思路 - 复盘:光照强度计算的优化模型
文章目录
- 0 赛题思路
- 1 问题要求
- 2 假设约定
- 3 符号约定
- 4 建立模型
- 5 模型求解
- 6 实现代码
- 建模资料
0 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
1 问题要求
现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图

要求:
- (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
- (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
- (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
- (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?
(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)
2 假设约定
- 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
- 2 室内不受外界光源影响;
- 3 教室高度为2.5米;
- 4 不考虑光的反射;
- 5 线光源发光是均匀的.
3 符号约定

4 建立模型


5 模型求解


6 实现代码
matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了
clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),' ','y11=',num2str(y11),' ','x12=',num2str(x12),' ','y12=',num2str(y12),' ','x13=',num2str(x13),' ','y13=',num2str(y13),' ','x14=',num2str(x14),' ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),' ','y21=',num2str(y21),' ','x22=',num2str(x22),' ','y22=',num2str(y22),' ','x23=',num2str(x23),' ','y23=',num2str(y23),' ','x24=',num2str(x24),' ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1, x12=x2,y12=y2, x13=x3,y13=y3, x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),' ','y11=',num2str(y11),' ','x12=',num2str(x12),' ','y12=',num2str(y12),' ','x13=',num2str(x13),' ','y13=',num2str(y13),' ','x14=',num2str(x14),' ','y14=',num2str(y14)])
li
建模资料
资料分享: 最强建模资料


相关文章:
2024美赛数学建模思路 - 复盘:光照强度计算的优化模型
文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米,宽为12米&…...
【Deep Dive: AI Webinar】开放 ChatGPT - 人工智能开放性运作的案例研究
【深入探讨人工智能】网络研讨系列总共有 17 个视频。我们按照视频内容,大致上分成了 3 个大类: 1. 人工智能的开放、风险与挑战(4 篇) 2. 人工智能的治理(总共 12 篇),其中分成了几个子类&…...
Devops相关问题及答案(2024)
1、DevOps 的理念是什么? DevOps是一种组织文化、流程和工具的集合,旨在提高软件交付的速度和质量,通过自动化和持续改进的方法来促进开发(Dev)和运维(Ops)的协作。 DevOps的核心理念包括&…...
掌握Python设计模式,SQL Alchemy打破ORM与模型类的束缚
大家好,反转软件组件之间的依赖关系之所以重要,是因为它有助于降低耦合度和提高模块化程度,进而可以提高软件的可维护性、可扩展性和可测试性。 当组件之间紧密耦合时,对一个组件的更改可能会对其他组件产生意想不到的影响&#…...
性能分析与调优: Linux 磁盘I/O 观测工具
目录 一、实验 1.环境 2.iostat 3.sar 4.pidstat 5.perf 6. biolatency 7. biosnoop 8.iotop、biotop 9.blktrace 10.bpftrace 11.smartctl 二、问题 1.如何查看PSI数据 2.iotop如何安装 3.smartctl如何使用 一、实验 1.环境 (1)主机 …...
Could not erase files or folders:
IDEA删除 git 的 localChanges 内的文件时,提示Could not erase files or folders:。 确认下这个文件是否被打开,忘记关闭了;关闭后可以被删除。(文件被打开的情况下,用操作系统自带的删除,也无法删除成功…...
算法训练营第四十四天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ
目录 动态规划:完全背包理论基础Leetcode518.零钱兑换IILeetcode377. 组合总和 Ⅳ 动态规划:完全背包理论基础 文章链接:代码随想录 题目链接:卡码网:52. 携带研究材料 思路:完全背包问题,物品可…...
探索计算机网络:应用层的魅力
在当今数字化时代,计算机网络已成为我们生活和工作中不可或缺的一部分。网络的每一层都扮演着独特而重要的角色,而应用层,作为网络模型中用户最直接接触的部分,其重要性不言而喻。这篇文章旨在深入探索应用层的核心概念、功能以及…...
MySQL 按日期流水号 条码 分布式流水号
有这样一个场景,有多台终端,要获取唯一的流水号,流水号格式是 日期0001形式,使用MySQL的存储过程全局锁实现这个需求。 以下是代码示例。 注:所有的终端连接到MySQL服务器获取流水号,如果获取到的是 “-1”…...
前端导出Excel文件,部分数字前面0消失处理办法
详细导出可以看之前的文章 js实现导出Excel文档_js 通过 接口 导出 xlsx 代码-CSDN博客 今天的问题是导出一些数据时,有些字段是前面带有0的字符串,而导出后再excel中就被识别成了数字 如图本来字符串前面的0 都没了 解决方案 1. 导出的时候在前面加单…...
零基础学Python网络爬虫案例实战 全流程详解 高级进阶篇
零基础学Python网络爬虫案例实战 全流程详解 入门与提高篇 零基础学Python网络爬虫案例实战 全流程详解 高级进阶篇 编辑推荐 本书讲解了Python爬虫技术的高级进阶知识,帮助有一定爬虫基础的读者进一步提高爬虫技术。本书详解了突破反爬机制的常用手段以及Scrapy和…...
第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
目录 5.3.3 问题三的总结 5.4 问题四的模型建立与求解 5.4.1 问题分析 5.4.2 计算方位角和航向角...
bmp图像文件格式超详解
0 BMP简介 BMP(Bitmap-File)图形文件,又叫位图文件,是Windows采用的图形文件格式,在Windows环境下运行的所有图像处理软件都支持BMP图像文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。一个BMP文件由四部分组成: B…...
Unity Meta Quest 一体机开发(十三):【手势追踪】自定义交互事件 EventWrapper
文章目录 📕教程说明📕交互事件概述📕自定义交互逻辑⭐方法一:Inspector 面板赋值⭐方法二:纯代码处理 此教程相关的详细教案,文档,思维导图和工程文件会放入 Spatial XR 社区。这是一个高质量…...
13、Redis高频面试题
1、项目中为什么用Redis 我们项目中之所以选择Redis,主要是因为Redis有下面这些优点: 操作速度快:Redis的数据都保存在内存中,相比于其它硬盘类的存储,速度要快很多数据类型丰富:Redis支持 string&#x…...
Koa学习笔记
1、npm 初始化 npm init -y生成 package.json 文件,记录项目的依赖2、git 初始化 git init生成 .git 隐藏文件夹,.git 的本地仓库创建 .gitignore 文件,添加不提交文件的名称3、创建 ReadMe.md 文件 记录项目笔记4、搭建项目 安装 Koa 框架npm install koa5、编写最基本的…...
HiDataPlus 3.3.2-005 搭建(个人的一点心得体会 x86 平台)
HDP 集群搭建 前置安装 yum -y install createrepo yum install -y lrzsz yum install -y wget yum install -y vim修改当前集群机器的主机名 hostnamectl set-hostname XXX 这里的 XXX 就是要设置的当前机器的主机名称。主机名称是集群唯一的,一定不要重复&am…...
【PHP】PHP实现与硬件串口交互,接收硬件发送的实时数据
一、前言 目的:借助虚拟串口软件(VSPD)模拟硬件串口发送数据,使用PHP语言实现接收硬件发送的数据。 我这里的需求是连接天平,把天平的称量数据实时的传送到PHP使用。 使用工具:vspd串口调试工具 使用语…...
HNU-数据库系统-作业
数据库系统-作业 计科210X 甘晴void 202108010XXX 第一章作业 10.09 1.(名词解释)试述数据、数据库、数据库管理系统、数据库系统的概念。 数据,是描述事物的符号记录。 数据库(DB),是长期存储在计算机内、有组织、可共享的大量…...
Python基础知识:整理10 异常相关知识
1 异常的捕获 1.1 基础写法 """基本语法:try:可能发生错误的代码except:如果出现异常,将执行的代码""" try:fr open("D:/abc.txt", "r", encoding"utf-8") except:print("出现异常…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
