当前位置: 首页 > news >正文

2024美赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录

  • 0 赛题思路
    • 1 问题要求
    • 2 假设约定
    • 3 符号约定
    • 4 建立模型
    • 5 模型求解
    • 6 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 问题要求

现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
在这里插入图片描述
要求:

  • (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
  • (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
  • (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
  • (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?

(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)

2 假设约定

  • 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
  • 2 室内不受外界光源影响;
  • 3 教室高度为2.5米;
  • 4 不考虑光的反射;
  • 5 线光源发光是均匀的.

3 符号约定

在这里插入图片描述

4 建立模型

在这里插入图片描述
在这里插入图片描述

5 模型求解

在这里插入图片描述
在这里插入图片描述

6 实现代码

matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了

clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),'  ','y21=',num2str(y21),'  ','x22=',num2str(x22),'  ','y22=',num2str(y22),'  ','x23=',num2str(x23),'  ','y23=',num2str(y23),'  ','x24=',num2str(x24),'  ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1,  x12=x2,y12=y2,  x13=x3,y13=y3,  x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
li

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

相关文章:

2024美赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米&#xff0c;宽为12米&…...

【Deep Dive: AI Webinar】开放 ChatGPT - 人工智能开放性运作的案例研究

【深入探讨人工智能】网络研讨系列总共有 17 个视频。我们按照视频内容&#xff0c;大致上分成了 3 个大类&#xff1a; 1. 人工智能的开放、风险与挑战&#xff08;4 篇&#xff09; 2. 人工智能的治理&#xff08;总共 12 篇&#xff09;&#xff0c;其中分成了几个子类&…...

Devops相关问题及答案(2024)

1、DevOps 的理念是什么&#xff1f; DevOps是一种组织文化、流程和工具的集合&#xff0c;旨在提高软件交付的速度和质量&#xff0c;通过自动化和持续改进的方法来促进开发&#xff08;Dev&#xff09;和运维&#xff08;Ops&#xff09;的协作。 DevOps的核心理念包括&…...

掌握Python设计模式,SQL Alchemy打破ORM与模型类的束缚

大家好&#xff0c;反转软件组件之间的依赖关系之所以重要&#xff0c;是因为它有助于降低耦合度和提高模块化程度&#xff0c;进而可以提高软件的可维护性、可扩展性和可测试性。 当组件之间紧密耦合时&#xff0c;对一个组件的更改可能会对其他组件产生意想不到的影响&#…...

性能分析与调优: Linux 磁盘I/O 观测工具

目录 一、实验 1.环境 2.iostat 3.sar 4.pidstat 5.perf 6. biolatency 7. biosnoop 8.iotop、biotop 9.blktrace 10.bpftrace 11.smartctl 二、问题 1.如何查看PSI数据 2.iotop如何安装 3.smartctl如何使用 一、实验 1.环境 &#xff08;1&#xff09;主机 …...

Could not erase files or folders:

IDEA删除 git 的 localChanges 内的文件时&#xff0c;提示Could not erase files or folders:。 确认下这个文件是否被打开&#xff0c;忘记关闭了&#xff1b;关闭后可以被删除。&#xff08;文件被打开的情况下&#xff0c;用操作系统自带的删除&#xff0c;也无法删除成功…...

算法训练营第四十四天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ

目录 动态规划&#xff1a;完全背包理论基础Leetcode518.零钱兑换IILeetcode377. 组合总和 Ⅳ 动态规划&#xff1a;完全背包理论基础 文章链接&#xff1a;代码随想录 题目链接&#xff1a;卡码网&#xff1a;52. 携带研究材料 思路&#xff1a;完全背包问题&#xff0c;物品可…...

探索计算机网络:应用层的魅力

在当今数字化时代&#xff0c;计算机网络已成为我们生活和工作中不可或缺的一部分。网络的每一层都扮演着独特而重要的角色&#xff0c;而应用层&#xff0c;作为网络模型中用户最直接接触的部分&#xff0c;其重要性不言而喻。这篇文章旨在深入探索应用层的核心概念、功能以及…...

MySQL 按日期流水号 条码 分布式流水号

有这样一个场景&#xff0c;有多台终端&#xff0c;要获取唯一的流水号&#xff0c;流水号格式是 日期0001形式&#xff0c;使用MySQL的存储过程全局锁实现这个需求。 以下是代码示例。 注&#xff1a;所有的终端连接到MySQL服务器获取流水号&#xff0c;如果获取到的是 “-1”…...

前端导出Excel文件,部分数字前面0消失处理办法

详细导出可以看之前的文章 js实现导出Excel文档_js 通过 接口 导出 xlsx 代码-CSDN博客 今天的问题是导出一些数据时&#xff0c;有些字段是前面带有0的字符串&#xff0c;而导出后再excel中就被识别成了数字 如图本来字符串前面的0 都没了 解决方案 1. 导出的时候在前面加单…...

零基础学Python网络爬虫案例实战 全流程详解 高级进阶篇

零基础学Python网络爬虫案例实战 全流程详解 入门与提高篇 零基础学Python网络爬虫案例实战 全流程详解 高级进阶篇 编辑推荐 本书讲解了Python爬虫技术的高级进阶知识&#xff0c;帮助有一定爬虫基础的读者进一步提高爬虫技术。本书详解了突破反爬机制的常用手段以及Scrapy和…...

第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)

目录 5.3.3 问题三的总结 5.4 问题四的模型建立与求解 5.4.1 问题分析 5.4.2 计算方位角和航向角...

bmp图像文件格式超详解

0 BMP简介 BMP(Bitmap-File)图形文件&#xff0c;又叫位图文件&#xff0c;是Windows采用的图形文件格式&#xff0c;在Windows环境下运行的所有图像处理软件都支持BMP图像文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。一个BMP文件由四部分组成&#xff1a; B…...

Unity Meta Quest 一体机开发(十三):【手势追踪】自定义交互事件 EventWrapper

文章目录 &#x1f4d5;教程说明&#x1f4d5;交互事件概述&#x1f4d5;自定义交互逻辑⭐方法一&#xff1a;Inspector 面板赋值⭐方法二&#xff1a;纯代码处理 此教程相关的详细教案&#xff0c;文档&#xff0c;思维导图和工程文件会放入 Spatial XR 社区。这是一个高质量…...

13、Redis高频面试题

1、项目中为什么用Redis 我们项目中之所以选择Redis&#xff0c;主要是因为Redis有下面这些优点&#xff1a; 操作速度快&#xff1a;Redis的数据都保存在内存中&#xff0c;相比于其它硬盘类的存储&#xff0c;速度要快很多数据类型丰富&#xff1a;Redis支持 string&#x…...

Koa学习笔记

1、npm 初始化 npm init -y生成 package.json 文件,记录项目的依赖2、git 初始化 git init生成 .git 隐藏文件夹,.git 的本地仓库创建 .gitignore 文件,添加不提交文件的名称3、创建 ReadMe.md 文件 记录项目笔记4、搭建项目 安装 Koa 框架npm install koa5、编写最基本的…...

HiDataPlus 3.3.2-005 搭建(个人的一点心得体会 x86 平台)

HDP 集群搭建 前置安装 yum -y install createrepo yum install -y lrzsz yum install -y wget yum install -y vim修改当前集群机器的主机名 hostnamectl set-hostname XXX​ 这里的 XXX 就是要设置的当前机器的主机名称。主机名称是集群唯一的&#xff0c;一定不要重复&am…...

【PHP】PHP实现与硬件串口交互,接收硬件发送的实时数据

一、前言 目的&#xff1a;借助虚拟串口软件&#xff08;VSPD&#xff09;模拟硬件串口发送数据&#xff0c;使用PHP语言实现接收硬件发送的数据。 我这里的需求是连接天平&#xff0c;把天平的称量数据实时的传送到PHP使用。 使用工具&#xff1a;vspd串口调试工具 使用语…...

HNU-数据库系统-作业

数据库系统-作业 计科210X 甘晴void 202108010XXX 第一章作业 10.09 1.(名词解释)试述数据、数据库、数据库管理系统、数据库系统的概念。 数据&#xff0c;是描述事物的符号记录。 数据库&#xff08;DB&#xff09;&#xff0c;是长期存储在计算机内、有组织、可共享的大量…...

Python基础知识:整理10 异常相关知识

1 异常的捕获 1.1 基础写法 """基本语法&#xff1a;try:可能发生错误的代码except:如果出现异常&#xff0c;将执行的代码""" try:fr open("D:/abc.txt", "r", encoding"utf-8") except:print("出现异常…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...