当前位置: 首页 > news >正文

LeetCode 面试题 05.02. Binary Number to String LCCI【字符串,数学】中等

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

Given a real number between 0 and 1 (e.g., 0.72) that is passed in as a double, print the binary representation. If the number cannot be represented accurately in binary with at most 32 characters, print “ERROR”.

Example1:

Input: 0.625
Output: "0.101"

Example2:

Input: 0.1
Output: "ERROR"
Note: 0.1 cannot be represented accurately in binary.

Note:

  • This two charaters “0.” should be counted into 32 characters.
  • The number of decimal places for num is at most 6 digits

题意:给出一个介于0到1之间的实数,作为一个 double 被传入函数中,题目要求打印该实数的二进制表示。如果不能用「最多32个字符的二进制字符串」表示该实数,则打印"ERROR"。比如说,0.625100.625_{10}0.62510 的二进制字符串表示是 0.10120.101_{2}0.1012 ,其中 "0." 这两个字符也要算入32个字符中。


解法一 十进制小数转为二进制数

介于0和1之间的实数的十进制整数部分是 000 ,小数部分大于 000 ,因此其二进制表示的整数部分是 000 ,需要将小数部分转换成二进制表示。

示例1中十进制数 0.6250.6250.625 可以写成 121+123\dfrac{1}{2^1} + \dfrac{1}{2^3}211+231 ​,因此对应的二进制数是 0.101(2)0.101_{(2)}0.101(2) ,二进制数中的左边的 111 为小数点后第一位,表示 12\dfrac{1}{2}21 ,右边的 111 为小数点后第三位,表示 123\dfrac{1}{2^3}231 ​。

如果将十进制数 0.6250.6250.625 乘以 222 ,则得到 1.251.251.25 ,可以写成 1+1221 + \dfrac{1}{2^2}1+221 ​,因此对应的二进制数是 1.01(2)1.01_{(2)}1.01(2) ​。二进制数 0.101(2)0.101_{(2)}0.101(2)​ 的两倍是 1.01(2)1.01_{(2)}1.01(2) ​,在二进制表示中将一个数乘以 222 的效果是将小数点向右移动一位

综上所述,将实数的十进制表示转换成二进制表示的方法是:每次将实数乘以 222 ,将此时的整数部分添加到二进制表示的末尾,然后将整数部分置为 000 ,重复上述操作,直到小数部分变成 000 、或者小数部分出现循环时结束操作。当小数部分变成 000 时,得到二进制表示下的有限小数;当小数部分出现循环时,得到二进制表示下的无限循环小数

由于这道题要求二进制表示的长度最多为 323232 位,否则返回 ERROR ,因此不需要判断给定实数的二进制表示是有限小数还是无限循环小数,而是在小数部分变成 000 或二进制表示的长度超过 323232 位时结束操作。当操作结束时,如果二进制表示的长度不超过 323232则返回二进制表示,否则返回 ERROR

class Solution {
public:string printBin(double num) {string ans = "0.";while (ans.size() <= 32 && num > 1e-10) {int f = num * 2;ans.push_back('0' + f);num = num * 2 - f;}return ans.size() <= 32 ? ans : "ERROR";}
};

复杂度分析

  • 时间复杂度:O(C)O(C)O(C) ,其中 CCC 是结果字符串的最大长度,C=32C = 32C=32 。最多计算 323232 位,每一位的计算时间是 O(1)O(1)O(1)
  • 空间复杂度:O(C)O(C)O(C) ,其中 CCC 是结果字符串的最大长度,C=32C = 32C=32 。存储结果的字符串需要 O(C)O(C)O(C) 的时间。

解法二 数学优化(最优)

numnumnum 如果可以表示为有限位二进制小数,那么可以表示为一个形如 b2k\dfrac{b}{2^k}2kb ​ 的最简分数,这里 bbb 是整数且与 2k2^k2k 互质(有限位可以不断左移,得到整数 bbb ,再除以 2k2^k2k 就等于原数;由于是最简形式,所以互质)。num\textit{num}num(0,1)(0,1)(0,1) 内时,k≥1k\ge 1k1bbb2k2^k2k 互质、也就与 222 互质numnumnum 大于1时,bbb 不一定与 222 互质。例如 0.625=58=5230.625=\dfrac{5}{8}=\dfrac{5}{2^3}0.625=85=235 ​,由于5=101(2)5=101_{(2)}5=101(2) ,所以 0.625=0.101(2)0.625=0.101_{(2)}0.625=0.101(2) ​。

对于一个十进制小数位数最多有 666 位的数 num\textit{num}num ,可以表示为分数 a106\dfrac{a}{10^6}106a​ 或者 a26⋅56\dfrac{a}{2^6\cdot 5^6}2656a ​。这里不要求是最简分数,只规定 aaa 是整数。

如果 num\textit{num}num 可以表示为有限位二进制小数,则有
a26⋅56=b2k\dfrac{a}{2^6\cdot 5^6}= \dfrac{b}{2^k}2656a=2kb
等号两边同时乘上 2k2^k2k ,得
a⋅2k−656\dfrac{a\cdot 2^{k-6}}{5^6}56a2k6
由于 bbb222 互质,等号左边不能有因子 222 ,所以 k−6≤0k-6\le 0k60 ,即 k≤6k\le 6k6 ,当 aaa 是奇数时取等号。

因此,num\textit{num}num 的十进制小数位数最多只有 666 位时,若 num\textit{num}num 能表示为有限位二进制小数,则二进制小数位数同样至多为 666由于 k≤6k\le 6k6 ,循环乘以2六次后,如果 num\textit{num}num 仍不为 000 ,则它必定无法精确地用二进制表示(是一个无限循环二进制小数)。

class Solution {
public:string printBin(double num) {string ans = "0.";while (ans.size() <= 8 && num > 1e-10) { // 6位小数,8位字符int f = num * 2;ans.push_back('0' + f);num = num * 2 - f;}return ans.size() <= 8 ? ans : "ERROR";}
};

复杂度分析

  • 时间复杂度:O(1)O(1)O(1)
  • 空间复杂度:O(1)O(1)O(1)

思考题

如果转换成 ppp 进制呢?根据上面的证明过程,当 ppp 是多少的时候,num\textit{num}num(十进制小数位数不超过6位)才可能表示为有限位 ppp 进制小数?
b=a×pk106b = \dfrac{a \times p^k}{10^6}b=106a×pk
答:只要 ppp 的因子包含 222555ppp2i×5j2^i\times 5 ^j2i×5j 时,才可以表示有限位 ppp 进制小数。

相关文章:

LeetCode 面试题 05.02. Binary Number to String LCCI【字符串,数学】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

数据结构 “串“ 的补充提升与KMP算法及其优化的具体实现

❤️作者主页&#xff1a;微凉秋意 ✅作者简介&#xff1a;后端领域优质创作者&#x1f3c6;&#xff0c;CSDN内容合伙人&#x1f3c6;&#xff0c;阿里云专家博主&#x1f3c6; ✨精品专栏&#xff1a;C面向对象 &#x1f525;系列专栏&#xff1a;数据结构与课程设计 文章目录…...

如何使用Spring Cloud搭建MQ(Message Queue)消息队列

Spring Cloud是一个开源框架&#xff0c;用于构建基于微服务架构的应用程序。它提供了多种工具和技术&#xff0c;用于实现各种微服务模式&#xff0c;并使它们易于管理和部署。MQ&#xff08;消息队列&#xff09;则是一种重要的异步通信机制&#xff0c;用于在不同的应用程序…...

iphone备忘录删除怎么恢复?分享苹果数据找回办法

手机备忘录上写记录&#xff0c;这是不少上班族的小习惯。因为它可以先记录紧急事务&#xff0c;然后再慢慢的解决。也可以把我们一些重要的账号密码存在备忘录里&#xff0c;方便在何时何地直接登入使用。那么如果我们不小心删除了iphone备忘录呢?碰到这种事该怎么办呢?有没…...

【PPT】《我去!还有这种网站?》-知识点目录

《我去&#xff01;还有这种网站&#xff1f;》 1. Vega AI 输入提示&#xff1a; girl&#xff0c;粉头发2. 物理画线&#xff1a;休闲小游戏 3. Dialogue&#xff1a;影视台词搜索 4. Can you run it&#xff1a;游戏设备要求查询 5. Deviceshots&#xff1a;使用设备边…...

SQL 将查询结果插入到另一张表中

INSERT INTO &#xff08;1&#xff09; 如果两张表&#xff08;导出表和目标表&#xff09;的字段一致&#xff0c;并且希望插入全部数据&#xff0c;可以用这种方法&#xff1a; INSERT INTO 目标表 SELECT * FROM 来源表 WHERE 条件;例如&#xff0c;要将 test 表插入到 n…...

代码随想录算法训练营day48 | 动态规划 121 买卖股票的最佳时机 122 买卖股票的最佳时机II

day48121. 买卖股票的最佳时机1.确定dp数组&#xff08;dp table&#xff09;以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组122.买卖股票的最佳时机II121. 买卖股票的最佳时机 题目链接 解题思路&#xff1a; 动规五部曲分析如下&#xff1a…...

MediaTek 天玑 8000 5G移动平台详细参数

MediaTek 天玑 8000 移动平台 采用先进的 台积电 5nm 工艺&#xff0c;拥有出众的性能和能效&#xff0c;为高端智能手机用户提供出色的高帧率游戏和 5G 移动体验。 天玑 8000 采用了 MediaTek 诸多先进技术&#xff0c;内置 MediaTek Imagiq 780影像引擎、第五代 AI 处理器APU…...

Kafka

这里写目录标题1.Kafka1.1 Kafka概述1.2 kafka安装和配置1.3 入门案例1.4 kafka生产者详解1.4.1 生产者的参数1.Kafka 1.1 Kafka概述 Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。 producer&#xff1a;发布消息的对象称之为主题生产者&#xff08;Ka…...

数据结构——第三章 栈与队列(2)

栈的运用1.括号匹配2.表达式求值2.1.算术表示式的形式2.2.后缀表达式求值2.3.将算术表达式转换为后缀表达式2.4.算术表达式直接求值3.栈与递归3.1.递归算法3.2.栈与函数调用3.3.递归工作与递归函数3.4.递归到非递归的转换1.括号匹配 void matching(char str[]) {//创建空栈Lin…...

【Linux学习】基础IO——理解缓冲区 | 理解文件系统

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《Linux学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 基础IO☕理解缓冲区&#x1f9c3;缓冲区的共识&#x1f9c3;缓冲区的位置&#x1f9c3;缓冲区的刷…...

RHCSA-重置root密码(3.3)

方法1&#xff1a;rd.break &#xff08;1&#xff09;首先重启系统&#xff0c;在此页面按e键&#xff0c;在屏幕上显示内核启动参数 &#xff08;2&#xff09;知道linux这行&#xff0c;末尾空格后输入rd.break&#xff0c;然后按ctrlx &#xff08;3&#xff09;查看&#…...

无公网IP快解析实现U+随时随地访问

现阶段商品从生产到消费者手中要经过多个环节&#xff0c;为实现对每一个环节进行管理&#xff0c;越来越多的企业选择通过信息化手段来实现。供应链管理系统配合供应链中各实体的业务需求&#xff0c;使操作流程和信息系统紧密配合&#xff0c;做到各环节无缝链接&#xff0c;…...

UVa 307 Sticks 木棍拼接 ID 迭代加深搜

题目链接&#xff1a;Sticks 题目描述&#xff1a; 小明一开始有一些长度相等的木棍&#xff0c;小明现在将木棍砍成了一些长度为整数的木棍&#xff0c;他现在忘记了最开始木棍的长度&#xff0c;你需要找到最短的可能木棍长度&#xff0c;例如给定5,2,1,5,2,1,5,2,15,2,1,5,2…...

阿里云(CentOS)中MySQL8忘记密码的解决方法

阿里云(CentOS)中MySQL8忘记密码的解决方法 方法 在 skip-grant-tables 模式下启动 MySQL&#xff0c;该模式下启动 MySQL 时不启动授权表功能&#xff0c;可以直接免密码登录 实现 编辑 /etc/my.cnf 文件 vim /etc/my.cnf在 [mysqld] 区域末尾添加配置&#xff0c;设置免密…...

三、Spring的入门程序

第一个Spring程序 创建新的空工程spring6 设置JDK版本17&#xff0c;编译器版本17 设置IDEA的Maven&#xff1a;关联自己的maven 在空的工程spring6中创建第一个maven模块&#xff1a;spring6-001-first 在pom.xml添加spring context依赖和junit依赖&#xff0c; <?x…...

摘录一下Python列表和元组的学习笔记

1 基础概念 列表一个值&#xff0c;列表值指的是列表本身&#xff0c;而不是列表中的内容 列表用[]表示 列表中的内容称为 表项 len()函数可以显示列表中表项的个数&#xff0c;比如下面这个例子 spam [cat, bat, dog, rat]print(len(spam))列表的范围选取中&#xff0c;比…...

【量化金融】收益率、对数收益率、年华收益、波动率、夏普比率、索提诺比率、阿尔法和贝塔、最大回撤

【量化金融】收益率、对数收益率、年华收益、波动率、夏普比率、索提诺比率、阿尔法和贝塔、最大回撤 1 收益率 在学术界&#xff0c;建模一般不直接使用资产价格&#xff0c;而是使用资产收益率(Returns)。因为收益率比价格具有更好的统计特性&#xff0c;更便于建模。下经典…...

1_机器学习概述—全流程

文章目录1 机器学习定义2 机器学习常见应用框架&#xff08;重点&#xff09;3 机器学习分类3.1 监督学习&#xff08;Supervised learning&#xff09;3.2 无监督学习&#xff08;Unsupervised learning&#xff09;3.3 半监督学习&#xff08;Semi-Supervised Learning&#…...

VUE中给对象添加新属性时,界面不刷新怎么办

一、直接添加属性的问题 举例&#xff1a; 定义一个p标签&#xff0c;通过v-for指令进行遍历 然后给botton标签绑定点击事件&#xff0c;我们预期点击按钮时&#xff0c;数据新增一个属性&#xff0c;界面也 新增一行。 <p v-for"(value,key) in item" :key&qu…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...