当前位置: 首页 > news >正文

【机器学习】模型参数优化工具:Optuna使用分步指南(附XGB/LGBM调优代码)

在这里插入图片描述

常用的调参方式和工具包

常用的调参方式包括网格搜索(Grid Search)、**随机搜索(Random Search)贝叶斯优化(Bayesian Optimization)**等。

工具包方面,Scikit-learn提供了GridSearchCV和RandomizedSearchCV等用于网格搜索和随机搜索的工具。另外,有一些专门用于超参数优化的工具包,如OptunaHyperopt等。

这些方法各自有优缺点。网格搜索和随机搜索易于理解和实现,但在超参数空间较大时计算代价较高。贝叶斯优化考虑了不同参数之间的关系,可以在较少实验次数内找到较优解,但实现较为复杂。

Optuna是什么?

Optuna是一个基于贝叶斯优化的超参数优化框架。它的目标是通过智能的搜索策略,尽可能少的实验次数找到最佳超参数组合。Optuna支持各种机器学习框架,包括Scikit-learn、PyTorch和TensorFlow等。

Optuna的优势和劣势

个人使用体验:比起网格搜索和随机搜索,Optuna最明显的优势就是快。虽然最后的提升效果未必有前两种好,但是在整体效率上来看,Optuna能够大大减少调参时间。

优势:

  1. 智能搜索策略: Optuna使用TPE(Tree-structured Parzen Estimator)算法进行贝叶斯优化,能够更智能地选择下一组实验参数,从而加速超参数搜索。
  2. 轻量级: Optuna的设计简单而灵活,易于集成到现有的机器学习项目中。
  3. 可视化支持: 提供结果可视化工具,帮助用户直观地了解实验过程和结果。
  4. 并行优化: Optuna支持并行优化,能够充分利用计算资源,提高搜索效率。

劣势:

  1. 适用范围: 对于超参数空间较小或者问题较简单的情况,Optuna的优势可能不如其他方法显著。

如何使用Optuna进行调参?

使用Optuna进行调参的基本步骤如下:

  1. 定义超参数搜索空间: 使用Optuna的API定义超参数的搜索范围,例如学习率、层数等。
  2. 定义目标函数: 编写一个目标函数,用于评估给定超参数组合的模型性能。
  3. 运行Optuna优化: 使用Optuna的optimize函数运行优化过程,选择适当的搜索算法和优化目标。
  4. 获取最佳超参数: 通过Optuna提供的API获取找到的最佳超参数组合。

调参代码示例

主要分为几个步骤:

  1. 定义目标函数: 1)定义参数搜索范围 2)定义、训练和评估模型
  2. 运行Optuna优化
  3. 获取最佳超参数

1. SVM调优例子

以下是一个使用Optuna进行超参数优化的简单示例,假设我们使用Scikit-learn中的SVM进行分类:

import optuna
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC# 载入数据
data = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)# 定义目标函数
def objective(trial):# 定义超参数搜索范围C = trial.suggest_loguniform('C', 1e-5, 1e5)gamma = trial.suggest_loguniform('gamma', 1e-5, 1e5)# 构建SVM模型model = SVC(C=C, gamma=gamma)# 训练和评估模型model.fit(X_train, y_train)accuracy = model.score(X_test, y_test)return accuracy# 运行Optuna优化
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)# 获取最佳超参数
best_params = study.best_params
print("最佳超参数:", best_params)

2.LGBM调优例子

def objective(trial):params = {'objective': 'multiclass','metric': 'multi_logloss',  # Use 'multi_logloss' for evaluation'boosting_type': 'gbdt','num_class': 3,  # Replace with the actual number of classes'num_leaves': trial.suggest_int('num_leaves', 2, 256),'learning_rate': trial.suggest_loguniform('learning_rate', 0.001, 0.1),'feature_fraction': trial.suggest_uniform('feature_fraction', 0.1, 1.0),'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.1, 1.0),'bagging_freq': trial.suggest_int('bagging_freq', 1, 10),'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),}model = lgb.LGBMClassifier(**params)model.fit(X_train, y_train)y_pred = model.predict_proba(X_val)    loss = log_loss(y_val, y_pred)return lossstudy = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50,show_progress_bar=True)# Get the best parameters
best_params = study.best_params
print(f"Best Params: {best_params}")

3.XGB调优例子

def objective(trial):params = {'objective': 'multi:softprob',  # 'multi:softprob' for multiclass classification'num_class': 3,  # Replace with the actual number of classes'booster': 'gbtree','eval_metric': 'mlogloss',  # 'mlogloss' for evaluation'max_depth': trial.suggest_int('max_depth', 2, 10),'learning_rate': trial.suggest_loguniform('learning_rate', 0.001, 0.1),'subsample': trial.suggest_uniform('subsample', 0.1, 1.0),'colsample_bytree': trial.suggest_uniform('colsample_bytree', 0.1, 1.0),'min_child_weight': trial.suggest_int('min_child_weight', 1, 10),}model = XGBClassifier(**params)model.fit(X_train, y_train)y_pred = model.predict_proba(X_val)loss = log_loss(y_val, y_pred)return lossstudy = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50, show_progress_bar=True)# Get the best parameters
best_params = study.best_params
print(f"Best Params: {best_params}")

通过这个示例,你可以看到Optuna的简洁和易用性。通过定义搜索空间和目标函数,Optuna会自动选择最优的超参数组合。

总结

Optuna作为一个高效的超参数优化工具,在调参过程中具有明显的优势。通过智能的搜索策略和轻量级的设计,它可以显著减少调参的时间和计算资源成本。当面对大规模超参数搜索问题时,Optuna是一个值得考虑的利器,能够帮助机器学习和数据科学领域的从业者更高效地优化模型性能。

参考链接

官网:https://optuna.org/
说明文档:https://optuna.readthedocs.io/en/stable/
中文文档:https://optuna.readthedocs.io/zh-cn/latest/

相关文章:

【机器学习】模型参数优化工具:Optuna使用分步指南(附XGB/LGBM调优代码)

常用的调参方式和工具包 常用的调参方式包括网格搜索(Grid Search)、**随机搜索(Random Search)和贝叶斯优化(Bayesian Optimization)**等。 工具包方面,Scikit-learn提供了GridSearchCV和RandomizedSearchCV等用于网格搜索和随机搜索的工具。另外,有一…...

webview全屏处理,即插即用

去年双十一有个直播的需求,听起来很简单,技术也都很成熟,但是真的开始实现后,还是有不少坑的,首先第一个uc内核不支持webRTC协议,需要重新开发chrome内核的webview,其次webview全屏处理、悬浮窗…...

实录分享 | 央企大数据平台架构发展趋势与应用场景的介绍

分享嘉宾: 孟子涵-中国华能集团信息中心平台架构师 2021年华能就与Alluxio建立了合作,共同写了整个华能统一纳管的架构方案。这个方案我认为是现在我们在央企里边比较核心的一套体系,能让全集团所有我们认为重要的数字化资源实现真正的统一集…...

UE5 将类修改目录

有个需求,需要修改ue里面类的位置,默认在Public类下面,我想创建一个二级目录,将所有的类分好位置,方便查看。 上图为创建一个类所在的默认位置。 接下来,将其移动到一个新的目录中。 首先在资源管理器中找…...

GPT实战系列-ChatGLM3管理工具的API接口

GPT实战系列-ChatGLM3管理外部借力工具 用ChatGLM的工具可以实现很多查询接口和执行命令,外部工具该如何配置使用?如何联合它们实现大模型查询助手功能?例如调用工具实现股票信息查询,网络天气查询等助手功能。 LLM大模型相关文章…...

Python 列表、元组、字典区别

1.列表、元组和字典都是序列 2.列表字典可以修改和删除序列中的某个元素,而元组就是一个整体,不能修改和删除,一定要修改或删除的话,只能修改和删除整个元组。 3.既然元组不能删除和修改,有什么作用呢? 1…...

[足式机器人]Part2 Dr. CAN学习笔记 - Ch03 傅里叶级数与变换

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-Ch03 傅里叶级数与变换 1. 三角函数的正交性2. 周期为 2 π 2\pi 2π的函数展开为傅里叶级数3. 周期为 2 L 2L 2L的函数展开4. 傅里叶级数的复数形式5. 从傅里叶级数推导傅里叶变换FT6. 总结 1. …...

你想使用域名访问一个ip的网页,你应该怎么办呢?

你想使用域名访问一个ip的网页,你应该怎么办呢? eg:你想用https://test.com/访问http://1.1.1.1/方法: eg:你想用https://test.com/访问http://1.1.1.1/ 方法: 1.首先,如果你是服务器的管理者,你需要在服务器的官网申请一个test.com的域名,然后在官网将域名映射到1.1.1.1上. …...

SAP存放状态的几个常用表

SAP存放状态的几个常用表 在sap中,包括订单、项目、计划、设备主数据等,存在审批流程的业务单据,这些业务对象都会有状态的属性,用来控制和约束该业务当前的操作。 主要的表 JEST:存放了该对象编号的当前状态 JCDS…...

AUTO SEG-LOSS SEARCHING METRIC SURROGATES FOR SEMANTIC SEGMENTATION

AUTO SEG-LOSS: 搜索度量替代语义分割 论文链接:https://arxiv.org/abs/2010.07930 项目链接:https://github.com/fundamentalvision/Auto-Seg-Loss ABSTRACT 设计合适的损失函数是训练深度网络的关键。特别是在语义分割领域,针对不同的场…...

openssl3.2 - 官方demo学习 - 索引贴

文章目录 openssl3.2 - 官方demo学习 - 索引贴概述笔记工程的搭建和调试环境BIOBIO - client-arg.cBIO - client-conf.cBIO - saccept.cBIO - sconnect.cBIO - server-arg.cBIO - server-cmod.cBIO - server-conf.cBIO - 总结certsciphercipher - aesccm.ccipher - aesgcm.ccip…...

textarea文本框根据输入内容自动适应高度

第一种&#xff1a; <el-input auto-completeoff typetextarea :autosize"{minRows:3,maxRows:10}" class"no-scroll"> </el-input> /* 页面的样式表 */ .no-scroll textarea {overflow: hidden; /* 禁用滚动条 */resize: none; /* 禁止用户…...

【JAVA基础--计算机网络】--TCP三次握手+四次挥手

三次握手四次挥手 写在前面1. 三次握手1.1 作用&#xff1a; 为了在不可靠的信道上建立起可靠的连接&#xff1b;1.2 建立过程1.3 面试提问 2. 四次挥手2.1 作用&#xff1a;为了在不可靠的网络信道中进行可靠的连接断开确认2.2 断开过程2.3 面试提问 写在前面 三次握手建立连…...

最新靠谱可用的-Mac-环境下-FFmpeg-环境搭建

最近在尝试搭建 FFmpeg 开发环境时遇到一个蛋疼的事&#xff0c;Google 了 N 篇文章竟然没有一篇是可以跑起来的&#xff01; 少部分教程是给出了自我矛盾的配置&#xff08;是的&#xff0c;按照贴出来的代码和配置&#xff0c;他自己都跑不起来&#xff09;&#xff0c;大部…...

【漏洞复现】Hikvision SPON IP网络对讲广播系统存在命令执行漏洞CVE-2023-6895

漏洞描述 Hikvision Intercom Broadcasting System是中国海康威视(Hikvision)公司的一个对讲广播系统。 Hikvision Intercom Broadcasting System是中国海康威视(Hikvision)公司的一个对讲广播系统。Hikvision Intercom Broadcasting System 3.0.3_20201113_RELEASE(HIK)版…...

微软为Windows内置记事本应用开发AI功能;2024年15个 AI 语音生成器

&#x1f989; AI新闻 &#x1f680; 微软为Windows内置记事本应用开发AI功能 摘要&#xff1a;微软正在开发一个新的生成式AI功能&#xff0c;名为"Cowriter"&#xff0c;用于Windows内置的记事本应用。该功能类似于画图应用中的"Cocreator"功能&#x…...

【C++进阶06】红黑树图文详解及C++模拟实现红黑树

一、红黑树的概念及性质 1.1 红黑树的概念 AVL树用平衡因子让树达到高度平衡 红黑树可以认为是AVL树的改良 通过给每个节点标记颜色让树接近平衡 以减少树在插入节点的旋转 在每个结点新增一个存储位表示结点颜色 可以是Red或Black 通过对任何一条从根到叶子的路径上 各个结点…...

2023年最严重的10起0Day漏洞攻击事件

根据谷歌公司威胁分析小组去年 7 月发布的报告显示&#xff0c;2022 年全球共有 41 个 0day 漏洞被利用和披露。而研究人员普遍认为&#xff0c;2023 年被利用的 0Day 漏洞数量会比 2022 年更高&#xff0c;这些危险的漏洞被广泛用于商业间谍活动、网络攻击活动以及数据勒索攻击…...

Linux之Iptables简易应用

文档形成时期&#xff1a;2009-2024年 和iptables打交道有15年了&#xff0c;经过无数实践后&#xff0c;形成一个简易应用文档。 文档主题是简易应用&#xff0c;所以其原理不详述了。 因软件世界之复杂和个人能力之限&#xff0c;难免疏漏和错误&#xff0c;欢迎指正。 文章目…...

树状结构查询 - 华为OD统一考试

OD统一考试 分值: 200分 题解: Java / Python / C++ 题目描述 通常使用多行的节点、父节点表示一棵树,比如: 西安 陕西 陕西 中国 江西 中国 中国 亚洲 泰国 亚洲 输入一个节点之后,请打印出来树中他的所有下层节点。 输入描述 第一行输入行数,下面是多行数据,每行以…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...